

CHAPTER 1.2

Ultrastructure of Cells

BASIC IDEA

Eukaryotes have a much more complex cell structure than prokaryotes.

RESOLUTION MICROSCOPES

	resolution		
	Millimetres (mm)	Micrometres (µm)	Nanometres (nm)
Human eye	0.1	100	100,000
Light microscopes	0.0002	0.2	200
Electron microscopes	0.000001	0.001	1

PROKARYOTIC CELLS

- Prokaryotes have a simple cell structure without compartmentalization
- Two domains:
- Eubacteria: "traditional bacteria"
- Archaea: found in extreme environments

ULTRASTRUCTURE OF PROKARYOTES

ULTRASTRUCTURE OF PROKARYOTES

Nucleoid – region of the cytoplasm where the DNA is located (DNA strand is circular and called a genophore

Plasmids – autonomous circular DNA molecules that may be transferred between bacteria (horizontal gene transfer)

Slime capsule – a thick polysaccharide layer used for protection against drying out and phagocytosis

ULTRASTRUCTURE OF E.COLI AS AN EXAMPLE

Prokaryotes → parts of a cell/ultrastructure not organelles

CELL DIVISION IN PROKARYOTES

- Division of pre-existing cells (see cell theory)
- prokaryotes -> binary fission (asexual reproduction)

- 1.) DNA is replicated semi-conservatively (see DNA replication).
- 2.) Two DNA loops attach to membrane
- 3.) The membrane elongates and pinches off (cytokinesis), forming two cells

CELL DIVISION IN PROKARYOTES

←DNA is replicated semi-conservatively (see DNA replication).

← Two DNA loops attach to membrane

←The membrane elongates and pinches off (cytokinesis), forming two cells

EUKARYOTES ARE COMPARTMENTALIZED

Advantages:

- Enzymes can be more concentrated than if they were spread through cytoplasm = more efficient metabolism
- Conditions (such as pH) can be maintained at an ideal level (different processes, different pH lvls)
- Damaging substances can be isolated (e.g. digestive enzyme that could digest the cell itself is stored in lysosome).
- Organelles + contents can be moved around within the cell

EUKARYOTES

- organisms whose cells contain a nucleus ('eu' = good / true; 'karyon' = nucleus)
- more complex structure
- are believed to have evolved from prokaryotic cells (via endosymbiosis)
- organelles surrounded by membranes
- -organelles perform specific functions

EUKARYOTES

Protista – unicellular organisms

Fungi – have a cell wall & nutrition via absorption

Plantae – have a cell wall made of cellulose and obtain nutrition autotrophically (via photosynthesis)

Animalia – no cell wall and obtain nutrition via heterotrophic ingestion

STRUCTURE OF EUKARYOTIC CELLS

Animal cell Plant cell

UNIVERSAL STRUCTURES (PROKARYOTES & EUKARYOTES)

Ribosomes

Structure: Two subunits made of RNA and protein; eukaryotes (80S) - prokaryotes (70S)

Function: Site of polypeptide synthesis (translation)

Cytoskeleton

Structure: A filamentous scaffolding within the cytoplasm

Function: internal structure & intracellular transport (less developed in prokaryotes)

Plasma membrane

Structure: Phospholipid bilayer embedded with proteins

Function: Semi-permeable and selective barrier surrounding the cell

EUKARYOTES - ORGANELLES

- Nucleus
- ER (rough and smooth)
- Golgi apparatus
- Lysosomes
- Mitochondria
- Ribosomes
- Chloroplast
- Vacuoles and Vesicles
- Microtubules and Centrioles
- Cilia and Flagella

NUCLEUS

- double membrane + pores
- contains chromosomes (DNA + histone proteins)
- Chromatin = uncoiled (usually at the edges + darker areas)
- where DNA is replicated and transcribed → mRNA leaves nucleus via pores
- mRNA exported to the cytoplasm \rightarrow protein synthesis

MITOCHONDRIA

how to pay taxes

how to get legaly married how to get a job

Mitochondria is the Powerhouse of the Cell

MITOCHONDRIA

When someone asks "what's the most important thing you remember from school?"

MITOCHONDRIA (A POEM)

Roses are red, it's hot like hell

MITOCHONDRION (PL.MITOCHONDRIA)

- surrounded by double membrane
- smooth outer membrane & folded inner membrane
- folds are called cristae
- fluid inside is called matrix
- shape varies
- ATP production by aerobic respiration
- fat is digested here if being used as an energy source in cell

FREE RIBOSOMES

- appear as dark granules in cytoplasm
- 80s
- not surrounded by membrane
- cunstructed in nucleolus
- Synthesizes proteins to work in cytoplasm, for use within the cell, e.g. enzymes

ROUGH ENDOPLASMIC RETICULUM

- consists of flattened membrane sacs (=cisternae)
- often located near nucleus
- 80s ribosomes attached to outside of cisternae
- rER synthesizes proteins →
 transported to the golgi apparatus
 (via vesicles) for modification → then
 secreted outside the cell

THE GOLGI APPARATUS

- also consists of cisternae
- different to rER:
- no attached ribosomes
- often close to the plasma membrane
- cisternae shorter and more curved
- processes (modifies) proteins from from the rER
- \rightarrow repackaged in vesicles for secretion outside the cell.

200 nm

04LungTEM

VESICLES

- single membrane with fluid inside
- Very small in size
- Used to transport materials inside of a cell

00 nm

04LungTEM

LYSOSOMES

- usually in animal cells
- single membrane
- formed from Golgi vesicles
- digestive enzymes for breakdown of
- ingested food in vesicles
- unwanted/damaged organelles
- the cell itself
- high concentration of enzymes → dark on mikrographs

VACUOLES

- single cell membrane with fluid inside
- maintains hydrostatic pressure
- plant cells: large and permanent
- animal cells:
- only sometimes
- smaller
- temporary
- various reasons (e.g. food digestion)

CILIA AND FLAGELLA (ANIMALS ONLY)

- whip-like structures projecting from cell surface
- contain microtubules
- flagella larger and usually only one (e.g. sperm)
- cilia smaller and many present
- movement or to create a current in a fluid

MICROTUBULES AND CENTRIOLES

Microtubules

- small cylindrical fibres called microtubules
- have a variety of functions, e.g. part of the structure of flagella or cell devision

Centrioles

anchor point for microtubules

Mr. Prantner: "ThE mltOcHoNdRiA iS tHe pOwErHoUsE oF tHe cElL." Chloroplasts:

CHLOROPLASTS (PLANTS ONLY)

- Many, but not all, plant cells contain chloroplasts
- double membrane
- Inside are stacks of thylakoids
- thylakoid = disc of flattened membrane
- shape = variable (usually ovoid)
- glucose is produced via photosynthesis
- Starch grains maybe present if photosynthesis is happening quickly

CELL WALL (PLANTS ONLY)

- extracellular component, not an organelle
- all plant cells, fungi and some protists
- consists mainly of cellulose
 - permeable (does not affect transport)
 - strong (gives support)
 - hard to digest (resistant to being broken down)

Courtesy of T. Howard, Cold Spring Harbor. Noncommercial, educational use only.

