3.1 Genes ## BASIC IDEA DNA = genetic blueprint -> codes for & determines an organism's characteristics it encodes proteins, which carry out cellular processes A specific length / sequence of DNA that encodes for a particular protein = **gene**The heritable factor that influences a specific characteristic # COMPARING NUMBERS OF GENES IB companion: p.142 orange box # **GENE LOCI** Position of a gene on a particular chromosome = **locus** (plural = loci) Eukaryotic gene loci identified to following features: - chromosome number - arm (p = short; q = long) - region and band ### GENE LOCI: EXAMPLES The gene TP53 (prevents tumours) is found at 17p13.1. ## GENE LOCI: EXAMPLES 16q13.2 11p13.1 17q1.1 ## **ALLELES** Alleles = different possible variations of a gene Genes encode a general characteristic: Eye color Alleles encode for a specific alternative: Blue eyes Alleles only differ from each other by one or few bases Gene: Eye colour # **ALLELES** ## LOCUS VS GENE VS ALLELE # COX-2, SMOKING AND STOMACH CANCER Data-based questions page 145 ## **MUTATIONS** A **gene mutation** is a change in the nucleotide sequence of a section of DNA coding for a specific trait \rightarrow may change a protein's function Gene mutations can either be: - **Somatic** occur in body cells → not inherited - Germline occur in gametes \rightarrow can be passed on to offspring ## **MUTATIONS** #### Gene mutations can be: - Beneficial: new variations of a trait - Detrimental: cannot carry out normal function - Neutral: no effect on functioning # **MUTAGEN** A mutagen is an agent that changes (mutates) the genetic material of an organism | Physical | | Chemical | | | Biological | | |------------------|---------------------|-------------------------|--------------------|-------------------|------------------|-------------------------------------| | WWW. | | | | | | | | UV
(from sun) | X-rays
(medical) | Carcinogen (cigarettes) | Processed
foods | Cleaning products | Viruses
(HPV) | Bacteria
(<i>Helicobacter</i>) | ## TYPES OF MUTATIONS Point mutations \rightarrow modification of a single nucleotide within a sequence - substitutions, insertions or deletions Substitution mutations can either cause: - Silent mutations no change to sequence (due to degeneracy) - Missense mutations a signle amino acid is changed in the polypeptide - Nonsense mutations a stop codon is created, malfunction of polypeptide Insertions and deletions cause <u>frameshift</u> mutations (changes reading frame) # TYPES OF MUTATIONS: | | No | Point mutations | | | | | |---------|----------|-----------------|----------|----------|--|--| | | mutation | Silent | Missense | Nonsense | | | | DNA | TTC | TTT | TCC | ATC | | | | mRNA | AAG | AAA | AGG | UAG | | | | Protein | Lys | Lys | Arg | STOP | | | | | | | | | | | ## MUTATION EXAMPLE: SICKLE CELL A single base-substitution mutation occurs here Chromosome 11 Normal 11p15.5 sense **CCT GAG GAG** p **GGA CTC CTC** - 11p11.11 anti-sense - 11q12.1 transcription **CCU GAG GAG** q mRNA translation - 11q25 glu. ac glu. ac pro normal Hb #### Comparing glutamic acid and valine What differences in properties can we deduce from the structures? How might this change the quaternary protein structure? #### Comparing glutamic acid and valine What differences in properties can we deduce from the structures? How might this change the quaternary protein structure? ## SUMMARY: SICKLE CELLS Sickle cell anemia is caused by a base substitution in hemoglobin - 6th codon (sense strand): GAG → GTG - Amino acid: Glu -> Val # MUTATION CONSEQUENCE: ANAEMIA The amino acid change alters structure \rightarrow hemoglobin forms insoluble strands These insoluble strands change the shape (sickle shape) The red blood cells cannot carry oxygen effectively and are destroyed at a higher rate – leading to **anemia** Sickle cells are more likely to form clots Sickle Blood Cell # Normal (Wild-Type) Haemoglobin Red Blood Cell Round (biconcave) Normal (globular) #### 'Sickle Cell' Haemoglobin ## SICKLE CELL VERSUS MALARIA #### Correlation between Prevalence of Sickle Cell Allele and Malaria ## **GENOMES** Genome = totality of genetic information in a cell or organism (coding + non-coding sequences) # HUMAN GENOME The Human Genome Project (HGP) \rightarrow international cooperative venture \rightarrow sequence entirety of human genome. - -46 chromosomes - -~3 billion base pairs - -~21 000 genes ## GENETICS COMPARISON Species differ in genome size, number of chromosomes and number of genes There is **no** clear correlation between these factors \rightarrow but other trends - viruses and prokaryotes tend to have a smaller genome + fewer genes - eukaryotes have huge variation in genome size and gene numbers Overall **no** consistent or reliable pattern. # **GENOME SIZE** | Species | T2 phage | Escherichia
coli | Drosophila
melanogaster | Homo sapiens | Paris japonica | |----------------|------------|---------------------|----------------------------|----------------|----------------| | Genome Size | 170,000 bp | 4.6 million bp | 130 million bp | 3.2 billion bp | 150 billion bp | | Common
Name | Virus | Bacteria | Fruit fly | Human | Canopy Plant | # CHROMOSOME NUMBER | Species | Parascaris
equorum | Oryza sativa | Homo sapiens | Pan troglodytes | Canis familiaris | |----------------|-----------------------|--------------|--------------|-----------------|------------------| | Chromosomes | 4 | 24 | 46 | 48 | 78 | | Common
Name | Roundworm | Rice | Human | Chimpanzee | Dog | # GENE NUMBERS | Species | Escherichia
coli | Gallus gallus | Homo sapiens | Daphnia pulex | Oryza sativa | |----------------|---------------------|---------------|--------------|---------------|--------------| | Genome Size | ~4,200 | ~17,000 | ~21,000 | ~31,000 | ~38,000 | | Common
Name | Bacteria | Chicken | Human | Water flea | Rice |