

CHAPTER 3.4

Inheritance

JOHANN GREGOR MENDEL

Austrian monk & father of modern genetics.

planted 1000s of seeds per trial & carried out many trials

His work published $1865 \rightarrow$ was ignored for 30 years

MENDEL'S EXPERIMENT

	Flower Color	Plant Height	Seed Color	Seed Shape	Pod Color	Pod Shape
Dominant Trait	purple: 705	tall: 787	green: 6022	ound: 5474	green: 428	inflated: 882
Recessive Trait	white: 224	short: 257	yellow: 2001	wrinkled: 1850	yellow: 152	flat: 299
Ratio	3.15 : 1	3.06:1	3.01:1	2.96 : 1	2.82:1	2.95:1

MENDEL'S CONCLUSIONS

Mendel's Conclusions	Current Understanding
Organisms have inheritable factors	
There are versions of each factor	
Parents pass on only one version	
Parents contribute equally to inheritance	
Only one version of a factor is expressed	

MENDEL'S CONCLUSIONS

Mendel's Conclusions	Current Understanding
Organisms have inheritable factors	These factors are called <i>genes</i>
There are versions of each factor	Genes have alternative alleles
Parents pass on only one version	Gametes (sex cells) are haploid
Parents contribute equally to inheritance	Offspring body cells are diploid
Only one version of a factor is expressed	Dominant versus recessive alleles

MECHANISMS OF INHERITANCE

GENES VS ALLELES

DIPLOID VS HAPLOID

Genes are located at specific positions on chromosomes (=locus)

Offspring inherit chromosomes from **both** parents \rightarrow chromosome pairs

- only one chromosome of each homologous pair gets passed on to offspring

Consequence:

- body cells = **diploid** (two alleles per gene)
- sex cells = **haploid** (one allele per gene)

ALLELE SEGREGATION IN GAMETES

Haploid gametes – because of meiosis

Meiosis separates chromosome (and allele) pairs into separate gametes

Segregation = random \rightarrow independent inheritance patterns

SEXUAL REPRODUCTION

Fusion of gametes \rightarrow diploid zygote

- two copies of every chromosome, two alleles for each gene
- allele combination \rightarrow random probability

TYPE OF ZYGOSITY

3 possible allele combinations:

- Homozygous: Alleles are the same
- **Heterozygous:** Alleles are different
- Hemizygous: There is only one allele

GENOTYPE VS PHENOTYPE

EXERCISE:

This image shows a pair of homologous chromosomes. Name and annotate the labeled features.

EXERCISE

This image shows a pair of homologous chromosomes. Name and annotate the labeled features.

HOW TO WORK WITH PUNNET GRIDS

- 1.) Designate characters to represent alleles (e.g. $\mathbf{A} = dark \ red; \mathbf{a} = light \ red$)
- 2.) Write the genotype and phenotype of the parents (e.g. dark red cross: Aa x Aa)
- 3.) Use a grid to work out gamete combinations (see below)
- 4.) Write the genotype and phenotype ratios of offspring (3 dark red : 1 light red)

Explain this

Mendel crossed some yellow peas with some yellow peas. Most offspring were yellow but some were green!

Segregation

"alleles of each gene separate into different gametes when the individual produces gametes"

The yellow parent peas must be **heterozygous**. The yellow phenotype is expressed.

Through meiosis and fertilisation, some offspring peas are homozygous recessive – they express a green colour.

Mendel did not know about DNA, chromosomes or meiosis.

Through his experiments he did work out that 'heritable factors' (genes) were passed on and that these could have different versions (alleles).

TASK:

Calculate Genotype and Phenotype ratios from different F1 generations:

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

SEGREGATION

Y or y

Key to alleles:

Y = yellow

= green

Genotype:

Gametes:

Y or y

Punnet Grid:

Genotypes:

Phenotypes:

Phenotype ratio:

Simplified notation of using upper case for dominant and lower case for recessive is acceptable in the case of two alleles without codominance.

MONOHYBRID CROSSossing a single trait.

F₁ Phen

Genotypes:

Phenotypes:

MONOHYBRID CROSSossing a single trait.

crossed with

Y or y

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

Genotype:

Gametes:

Y or y

Punnet Grid:

gametes	Y	ያ እ
Y	YY	Yy
У	Yy	уу

Genotypes:

Phenotypes:

Phenotype ratio:

MONOHYBRID CROSSossing a single trait.

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

Fo

Phenotype:

Genotype:

xrossed with

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

Homozygous recessive

Homozygous recessive

Punnet Grid:

F

Genotypes:

Phenotypes:

Phenotype ratio:

 F_{o}

Phenotype:

X crossed with

○♂

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

Genotype:

уу

у у

Homozygous recessive

Homozygous recessive

Punnet Grid:

y o y

y yy yy

y yy yy

F₁

Genotypes:

Phenotypes:

уу

Phenotype ratio:

All green

Fo

Phenotype:

X rossed with

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

Genotype:

Homozygous recessive

Heterozygous

Punnet Grid:

F

Genotypes:

Phenotypes:

Phenotype ratio:

 F_{o}

Phenotype:

X crossed with **○**♂

Yy

Genotype:

уу

Homozygous recessive

Heterozygous

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

y Yy yy
y Yy yy

Punnet Grid:

F

Genotypes:

/y

уу

уу

Phenotypes:

Yy

Phenotype ratio:

1:

Fo

Phenotype:

X crossed with

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

Genotype:

Homozygous dominant

Heterozygous

Punnet Grid:

F₁

Genotypes:

Phenotypes:

Phenotype ratio:

 F_{o}

Phenotype:

X crossed with

Key to alleles:

 $\mathbf{Y} = \text{yellow}$

y = green

Yy

Genotype:

Homozygous dominant

Heterozygous

Punnet Grid:

y Y y Yy Yy Yy YY Yy

F₁

Genotypes:

ΥΥ

үү Үу

Υy

Phenotypes:

Phenotype ratio:

All yellow

HOW CAN WE FIND OUT THE GENOTYPE?

Phenotype:

P

Genotype:

unknown

Key to alleles:

 $\mathbf{R} = \text{Red flower}$

r = white

TEST CROSS

Used to **determine the genotype** of an **unknown** individual. The unknown is crossed with a known **homozygous recessive**.

O Phe

Phenotype:

ဝှ 🏀

X crossed with **₩**♂

Key to alleles:

 $\mathbf{R} = \text{Red flower}$

r = white

Genotype:

unknown

Homozygous recessive

Possible outcomes:

F₁ Phenotypes:

Unknown parent = RR

gametes O

Unknown parent = Rr

TEST CROSS

Used to **determine the genotype** of an **unknown** individual. The unknown is crossed with a known **homozygous recessive**.

 F_{o}

Phenotype:

C

Key to alleles:

 $\mathbf{R} = \text{Red flower}$

r = white

Genotype:

unknown

Homozygous recessive

Possible outcomes:

F

Phenotypes:

All red

Unknown parent = RR

gametes	r C	ን r
R	Rr	Rr
R	Rr	Rr

Some white, some red

Unknown parent = Rr

gametes	r C	ን r	
R	Rr	Rr	%
<u>r</u>	rr	rr	\$

MENDELIAN LAWS

Law of Dominance and Uniformity

- Homozygous red X homozygous white

Law of Segregation of Genes

- Heterozygous x heterozygous

Law of independent Assortment

- Two features

ANALYZING GENETIC CROSSES

IB Companion p. 176/177