Carbohydrates and Lipids

Understandings:

- Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers
- Fatty acids can be saturated, monounsaturated or polyunsaturated
- Unsaturated fatty acids can be cis or trans isomers
- Triglycerides are formed by condensation from three fatty acids and one glycerol

Skills:

- Use of molecular visualisation software to compare cellulose, starch and glycogen
- Determination of body mass index by calculation or use of a nomogram

Applications:

- Structure and function of cellulose and starch in plants and glycogen in humans
- Scientific evidence for health risks of *trans* fats and saturated fatty acids
- Lipids are more suitable for long-term energy storage in humans than carbohydrates
- Evaluation of evidence and the methods used to obtain the evidence for health claims made about lipids

Carbohydrates

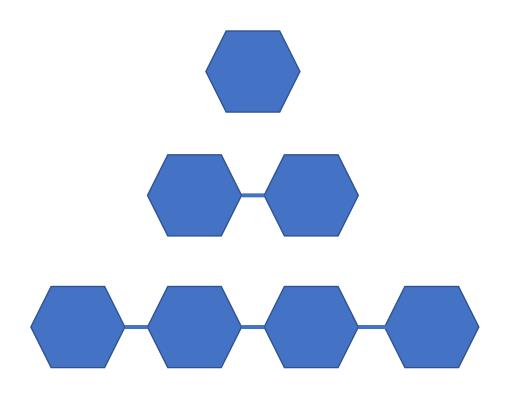
Hydrolysis and Dehydration

https://www.youtube.com/watch?v=ZMTeqZLXBSo

Types of Carbohydrates

	Monosaccharide	Disaccharide	Polysaccharide
Number of subunits			
Main Function			
Examples			

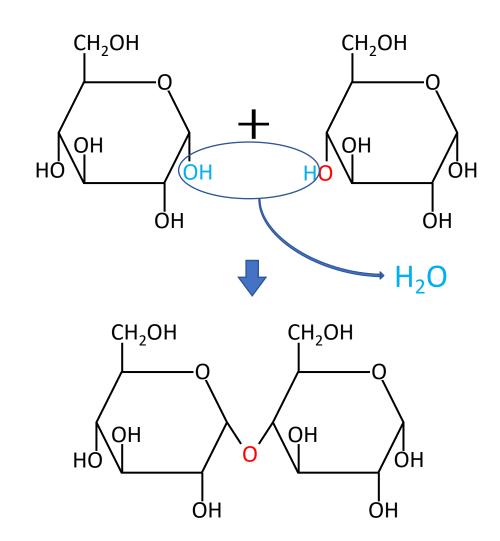
Types of Carbohydrates


https://www.youtube.com/watch?v=LeOUIXbFyqk

Types of Carbohydrates

• Monosaccharides → gr. "mono" = one

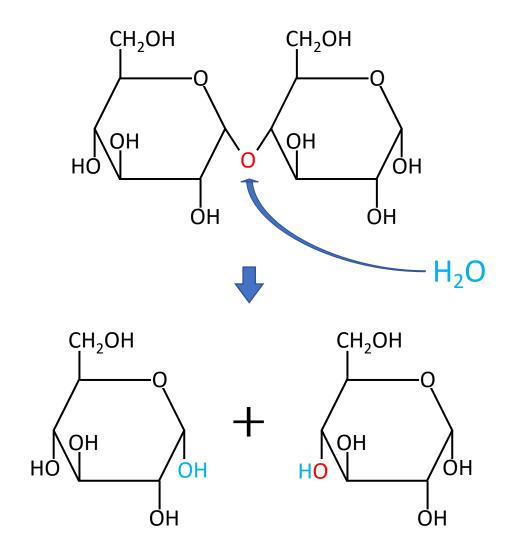
• Disaccharides → gr. "di" = two


• Polysaccharides → gr. "poly" = many

Condensation

 Loss of an –OH from one molecule and –H from another molecules
 → formation of H₂O

Anabolic process → requires energy

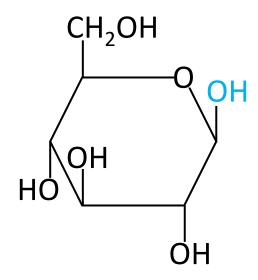

Hydrolysis

 H₂O is split into two parts and added to a molecule

 Molecule then separates into two parts

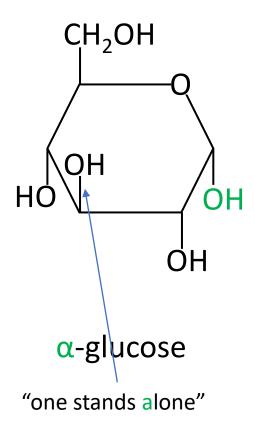
Catabolic process

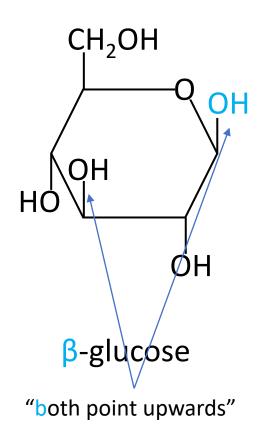
→ releases energy

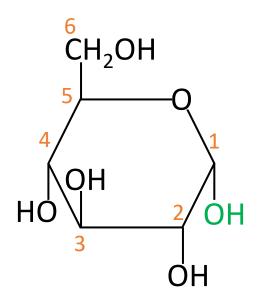


• 1,4-glycosidic linkage

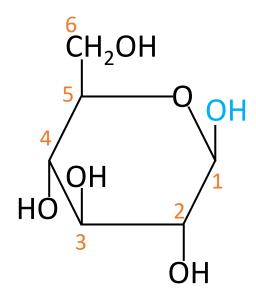
• 1,6-glycosidic linkage


Glucose


$$\alpha$$
-glucose

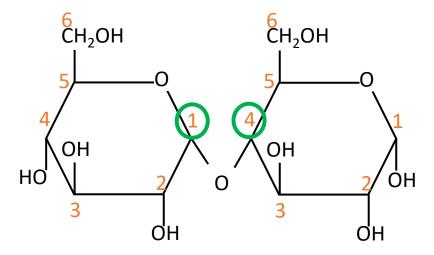

β-glucose

Glucose



Glucose

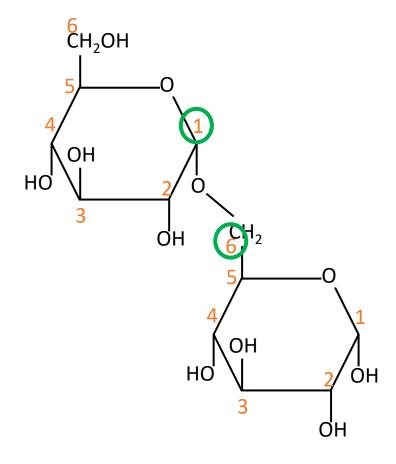
 α -glucose

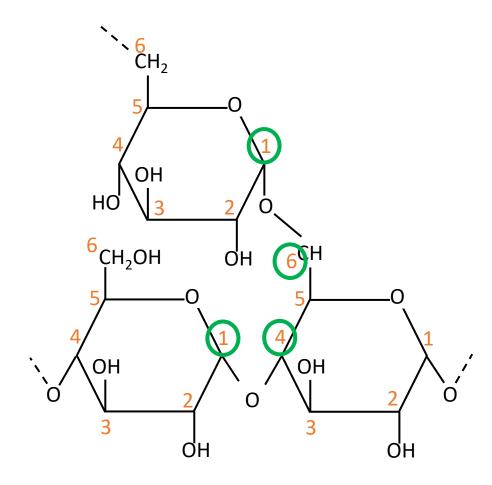

β-glucose

1,4-glycosidic linkage:

bond between:

• C-atom 1 of one molecule and


• C-atom 4 of the other molecule


1,6-glycosidic linkage:

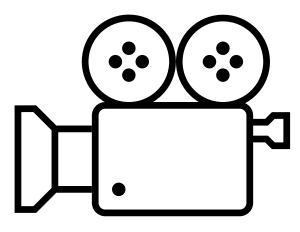
bond between:

- C-atom 1 of one molecule
 and
- C-atom 6 of the other molecule

1,4- and 1,6-glycosidic linkage

	Callulana	Starch		6 1	
	Cellulose	Amylose	Amylopectin	Glycogen	
Source	Plant	Plant	Plant	Animal	
Subunit	β-glucose	α-glucose	α-glucose	α-glucose	
Bonds	1-4	1-4	1-4 and 1-6	1-4 and 1-6	
Branches	No	No	Yes (~per 20 subunits)	Yes (~per 10 subunits)	
Diagram		5.5.5.5	5.5.5.5	5-5-5-5	
Shape	000000000000000000000000000000000000000	7777			

https://ib.bioninja.com. au/standard-level/topic-2-molecular-biology/23-carbohydrates-and-lipids/sugar-polymers. html


α-1,4-glycosidic linkage	α-1,6-glycosidic linkage
β-1,4-glycosidic linkage	β-1,6-glycosidic linkage

Lipids

Lipids

 Watch the video and make notes on the handout about lipids:

 https://www.youtube.com/watch?v=5B BYBRWzsLA

Characteristics of Lipids

Non-polar and insoluble in water ("hydrophobic")

Consist of carbon (C), hydrogen (H) and oxygen (O)

- Colloquial terms:
 - Fats: liquid at body temperature, solid at room temperature
 - Oils: liquid at body temperature and room temperature

Functions of Lipids?

Functions of Lipids

Functions of Lipids

Mnemonic: EPIC, huh? ©

Functions of Lipids

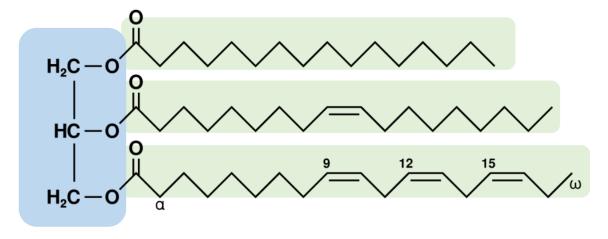
Mnemonic to remember: SHIPS

- Storage of energy
- Hormonal roles
- Insulation
- Protection of internal cavities
- Structural components of cells

Types of Lipids - Examples

Triglycerides

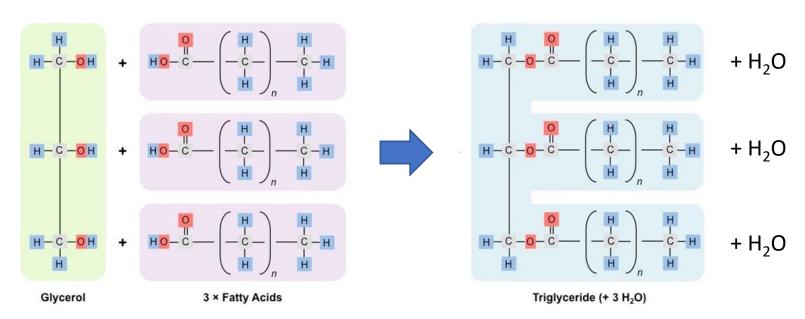
Phospholipids


• Steroids

Waxes

Triglyceride

• Form:


- Three fatty acids
- One glycerol molecule
- Main function:
 - Energy storage → energy can be released by aerobic cell respiration
 - Heat insulators

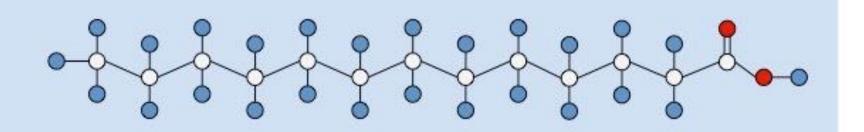
By Wolfgang Schaefer, Public Domain, https://commons.wikimedia.org/w/index.php?curid=116421

Triglycerides

- Formation:
 - Fatty acids are linked to glycerol by condensation reaction
 - → ester bonds are formed
 - → 3 water molecules are produced

Fatty Acids

- Structure:
 - -COOH group
 - Long hydrocarbon chain
- Different forms:
 - Saturated fatty acids
 - Unsaturated fatty acids
 - Monounsaturated
 - Polyunsaturated


or

- Cis-fatty acid
- Trans-fatty acid

Saturated Fatty Acids

- No double bonds \rightarrow linear
- Usually solid at room temperature
- Found in animals

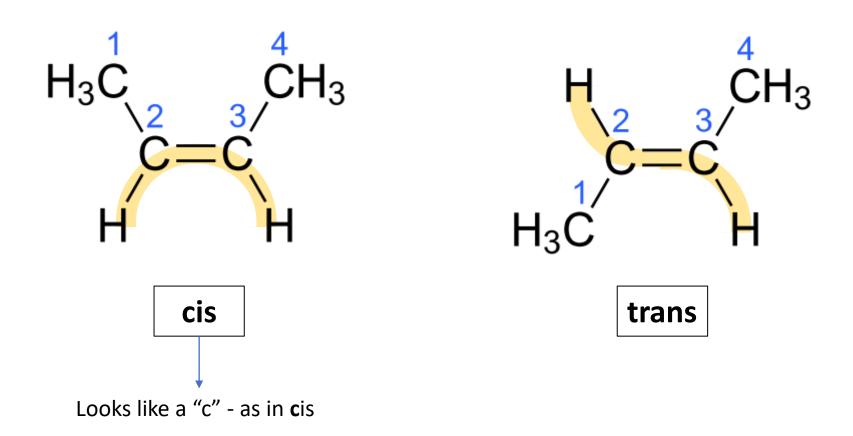
Saturated fatty acid (no double bonds)

Unsaturated Fats

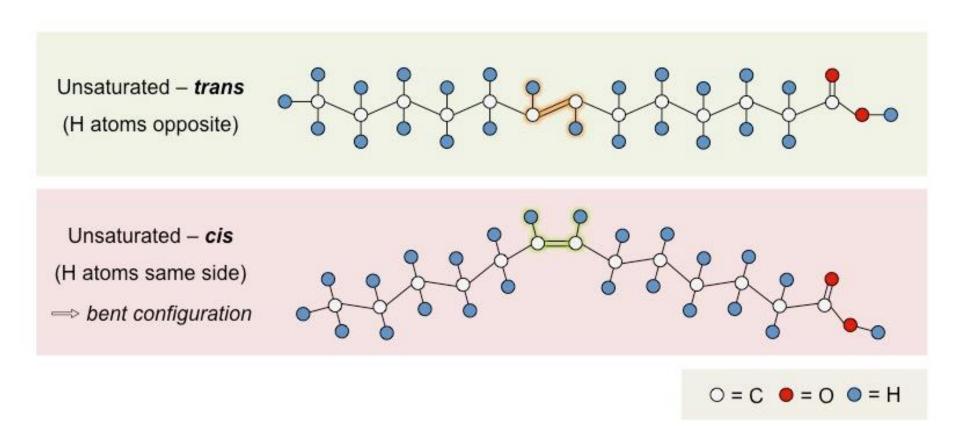
Mono- and Polyunsaturated Fatty Acids

Monounsaturated Fats

- gr. monos = "one", "single"
- Fatty acid contains one double bond somewhere in the chain
- Bent molecule
- Source: Plants/animals


Polyunsaturated Fats

- gr. polys = "many"
- Fatty acid contains at least two double bonds
- Many bends in the chain
- Source: plants


Unsaturated Fats

Cis- and Trans-Fatty Acids

Unsaturated Fats – Cis- and Trans-Fatty Acids

Unsaturated FatsCis- and Trans-Fatty Acids

Energy storage

• What is better for long-term storage, carbohydrates or lipids?

Energy storage

Carbohydrate (Glycogen)		Lipid (Triglyceride)
Short-term energy storage	Storage	Long-term energy storage
More effect on osmotic pressure	Osmolality	Less effect on osmotic pressure
More readily digested – used for aerobic or anaerobic respiration	Digestion	Less easily digested – can only be used for aerobic respiration
Stores half as much ATP per gram (~1760kJ per 100g)	ATP Yield	Stores twice as much ATP per gram (~4000kJ per 100g)
Water soluble as monomers / dimers – easier to transport	Solubility	Not water soluble (hydrophobic) – more difficult to transport