

CHAPTER 5.4

Cladistics

CLADISTICS

Ancient greek: κλάδος (kládos) 'branch'

Clade: A group of organisms, both extant and extinct that share an ancestor.

Cladistics: A system of classifying organisms according to shared characteristics, based on ancestry.

Cladogram: A diagram that shows the evolutionary relationship of a group of organisms.

REVISION HOMOLOGOUS STRUCTURES

Homologous structures:

similar in position, structure, and evolutionary origin, but not necessarily function

Divergent evolution:

two separate species \rightarrow a similar structure, but use it in different ways because of environment.

REVISION: ANALOGOUS VS HOMOLOGOUS

REVISION: ANALOGOUS VS HOMOLOGOUS

REVISION: ANALOGOUS STRUCTURES

Analogous:

similar function but different evolutionary origin e.g. bird and insect wings

Convergent evolution:

Different ancestor, but structures develop to resemble each other and have the same function.

REVISION: ANALOGOUS VS HOMOLOGOUS

Homologous Structures	Analogous Structures	
Due to common ancestry	Due to common selection pressures	
Arise via divergent evolution	Arise via convergent evolution	
Example: Pentadactyl limb in vertebrates	Example: Wings in insects, birds and bats	

REVISION: HOMOLOGOUS VS ANALOGOUS

Clade = group of organisms \rightarrow evolved from a common ancestor

each clade consists of a common ancestor (node) and all of its descendants clade memberspossess common traits due to a shared evolutionary lineage

Figure 1. Basking shark.

Figure 2. Common southern stingray.

Node = speciation event via divergent evolution

Cladograms show probable sequence

Fewer nodes between two groups \rightarrow more closely related

Node = speciation event via divergent evolution

Cladograms show probable sequence

Fewer nodes between two groups \rightarrow more closely related

Node = speciation event via divergent evolution

Cladograms show probable sequence

Fewer nodes between two groups \rightarrow more closely related

EXAMPLE:

Humans, chimps, gorillas, orangutans and gibbons = Hominoids

Hominoids + Old World and New World monkeys = Anthropoids

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

CLADOGRAMS

CLADOGRAMS

Root – initial ancestor common to all organisms within the cladogram

Nodes – each node = hypothetical common ancestor

Outgroup – most distantly related species in cladogram (often reference group)

Clades – A common ancestor and all of ist descendants

CONSTRUCTING CLADOGRAMS

Comparison of features or molecular evidence

Historically→ structural features

Nowadays → molecular evidence more common

EXAMPLE:

	Vertebrae	Four limbs	Amniotic egg	Egg shells	Hair/fur
Frog	V	V	-	-	-
Rodent	V	~	~		V
Lizard	V	~	V	~	-
Gorilla	V	V	V	-	V
Fish	V	-			-
Bird	V	V	V	V	-

EXAMPLE:

	Vertebrae	Four limbs	Amniotic egg	Egg shells	Hair/fur
Frog	V	~	-	-	-
Rodent	V	V	~	_	V
Lizard	V	V	V	~	-
Gorilla	V	V	~	-	V
Fish	V	-	-	-	-
Bird	V	V	V	V	-

TASK:

Create a simple cladogram from the following information:

Taxa	Characteristics
Bat	Fur, jaws, lungs, mammary glands
Eagle	Jaws, lungs
Kangaroo	Fur, jaws, lungs
Shark	Jaws
Chimpanzee	Fur, jaws, lungs, mammary glands, opposable thumbs

MOLECULAR EVIDENCE

Consensus F S T A A F R F G H A T I H P L V R R L D A

MOLECULAR EVIDENCE

Evidence for which species are part of a clade can be obtained from the base sequences of a gene or the corresponding amino acid sequence of a protein.

Similarities

MOLECULAR CLOCKS

The **molecular clock** is a figurative term for a technique that uses the mutation rate of biomolecules to deduce the time in prehistory when two or more life forms diverged.

EXAMPLE:

- a gene which mutates at a rate of 1 bp per 100,000 years has 6 bp different, divergence occurred 600,000 years ago

CLADISTICS: CONVERGENT & DIVERGENT EVOLUTION

MOLECULAR EVIDENCE \rightarrow RECLASSIFICATION

Crocodiles have been shown to be more closely related to birds than lizards, despite closely resembling lizards in structure

RECLASSIFICATION OF THE FIGWORT FAMILY

IB companion page 275