

CHAPTER 6.5

Neurons & Synapses

NEURONS

Neurons transmit electrical impulses.

REVISION: SODIUM-POTASSIUM PUMP

REVISION: SODIUM-POTASSIUM PUMP

- 1) Three sodium ions bind to protein pump
- 2) ATP transfers a phosphate group to the pump (hydrolysis) \rightarrow changes conformation
- 3) Interior of pump opens to outside \rightarrow sodium ions are released
- 4) Two potassium ions from outside attach to potassium pump
- 5) Binding of potassium \rightarrow releases phosphate group
- 6) release of phosphate \rightarrow changes conformation and potassium ions are released

RESTING POTENTIAL

- = difference in charge across the membrane when a neuron is <u>not</u> firing
- normally <u>inside</u> of the neuron is more negative relative to the outside (approximately –70 mV)
- K+ leaks back faster than Na+
- there are a lot of negatively charged proteins inside the nerve fibre

ACTION POTENTIAL

Two phases:

- depolarisation a change from negative to positive
- repolarisation a change back from positive to negative

DEPOLARISATION

- sodium channels open

- Na+ diffuses into the neuron

- reverses the charge imbalance across the membrane

- inside is positive relative to the outside (roughly +30mV)

REPOLARISATION

- right after depolarisation
- sodium channels close
- potassium channels open
- potassium diffuses out of the neuron
- makes inside negative again (close to -70mV)
- does not restore resting potential

PROPAGATION OF ACTION POTENTIAL

PROPAGATION OF ACTION POTENTIAL

- nerve impulse = action potential that is propagated from one end of a neuron to the other one

- ion movements that depolarize one part of neuron, trigger depolarization in the neighbouring part

LOCAL CURRENTS

THRESHOLD POTENTIAL

- Action potentials propagate according to the all-or-none-rule
- the minimum stimulus recquired = threshold potential (roughly -50mV)
- that stimulus is needed to open voltage gated channels
- if that potential is not reached, the action potential will not be generated and the neuron will not fire

OSCILLOSCOPE TRACES

DATA BASED QUESTIONS

p.324

MYELINATION

SYNAPSES

NEUROTRANSMITTERS: ACETYLCHOLINE

Used in many synapses (e.g. between neuron and muscle fibres).

choline (from food) + (aerobic respiration)

Postsynaptici cell → binding to receptors (for a very short time)

Acetylcholinesterase in synaptic cleft

Choline reabsorbed in pre-synaptic neuron -> recmobining with Acetyl

NEONICOTINOIDS

Orange box p. 326/327