(a)	Deduce the half-equations for the reaction at each electrode.
Cat	node (negative electrode):
74 303	O ACE STATE AND AND A MADER AND ADDRESS SOMETHING AND MADER AND ADDRESS AND AD
And	de (positive electrode):
04.18169	\$ \$2 \$ \$3 \$2 \$4 \$4 \$4 \$4 \$5 \$4 \$5 \$4 \$4 \$4 \$4 \$4 \$4 \$5 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4
(b)	Deduce the overall cell reaction including state symbols. Use section 7 of the data booklet.
30/3/15	
30.00	3 EX CES ES COS ES ESES ES ESES ES ESES ES ESES ES

Chemistry Standard level Paper 2

1 hour 15 minutes

Wednesday 18 May 2022 (afternoon)

	Tididate 3	ession n	ullibei	
1 1	1 1	1 11	1 1	

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

12 pages

2222-6117 © International Baccalaureate Organization 2022

Answer all questions. Answers must be written within the answer boxes provided.

1. 3.40 g of FeSO₄•xH₂O was dissolved in water to form 250.0 cm³ of solution.

A 25.00 cm³ sample of this solution was acidified and titrated with 0.0200 mol dm⁻³ KMnO₄ (aq).

(a) Complete the ionic equation for the reaction.

[1]

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + \dots + H^+(aq) \rightarrow \dots + (aq) + 5Fe^{3+}(aq) + \dots + H_2O(l)$$

(b) 20.00 cm³ of this KMnO₄(aq) solution was required to react fully with the Fe²+ ions present in the sample.

Calculate the number of moles of KMnO₄(aq) used in the titration.

[1]

[1]

•		·	•	ā is	 - 2	•55	 0.00		* 109		100	(14)		*3			66	•33	2.€	•	• : •		æ	•	 • • •	•	*		• •	0.30	*	÷	 (je	•	. ,		•		 ٤.	*	•		© •	*	•	 •	•			•	ĸ	
		11.	-			•		•	• 117					•										20	 	÷	27				2/						٠		 	÷						 •	÷		 •	÷		
	,	n'	Ť	• /	•	20	٠	•	•		٠	٠	7	9)	7	ĵ.	siž	•	ď	•		•	÷	0		·	50	M			22	e.		Ó	5 3	·	٠	•	ં	•	•	,	200	•	•	 Ö	•	•	7.7	•	•	

(c) Calculate the number of moles of Fe²⁺(aq) present in the 25.00 cm³ sample.

(d) Calculate the amount of FeSO₄ in 3.40 g FeSO₄•xH₂O.

[1]

(e) Calculate the relative formula mass of FeSO₄•xH₂O.

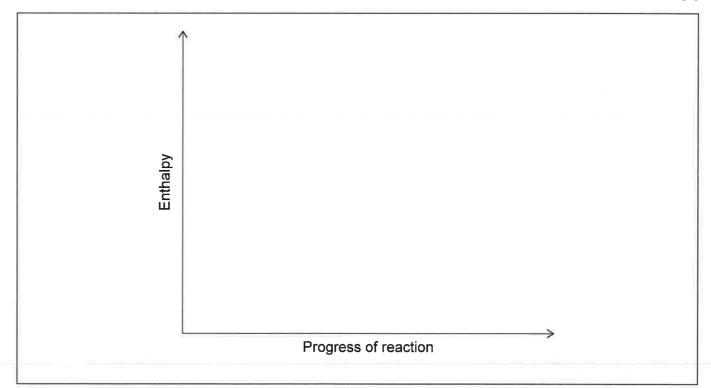
[1]

(This question continues on the following page)

(Question 4 continued)

(e) Chlorine reacts with methane.

$$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$


(i) Calculate the enthalpy change of the reaction, ΔH , using section 11 of the data booklet.

[3]

* *** **** *** ****			FORCE FOR BORDE FOR YOUR FOR WORL
			TODGET FOR CLOSED DAY GOTTON THAT GATE.
* 65 * 100 * 101 * 100 * 104 *	NOTE FOR ECO STORE ECO STORE ECO STORE ECO ECO.	KIRTH KINCK BER KERINGKIR KER YENIN KER A	NAME OF REPORT OF THE PARTY AND
		fra kronin in one in roa in i	
			DESK 100 100 100 100 100 100 100 100 100 10

(ii) Draw and label an enthalpy level diagram for this reaction.

[2]

(Question 1 continued)

(d) But-2-ene reacts with hydrogen bromide.

|--|

[1]

[2]

(ii) Write the equation for the reaction between but-2-ene and hydrogen bromide. [1

(iii) State the type of reaction. [1]

(iv) Suggest **two** differences in the ¹H NMR of but-2-ene and the organic product from (d)(ii).

(This question continues on the following page)

Turn over

(f))(et	e	rr	n	11	16	9	t	h	ı)	٧	8	ı	u	е)	0	f	2	x	i	r	1	F	=,	e	5	3	_)	4	•;	x	H	1	2	0),	ic .																																									[:	2
æ	*:	٠	*	to	t	•	•			•	*	٠	5		•	•	**		**	,		٠	te			*		53	•	11	56		ŧ.		58	•	*		•	*2			•		2	*	•		2.00	•	ti	•	ě			٠	*	e#		:33	•	•	t:	÷	*		22	123	ė	*:	٠		t	::«	,	20	en	833	•	*	ti		ż				
9	96	•	٠	•	٠	•)	• (0	•)(•)	•	٠		•	٠	•	9	•			•	•	٠			٠		ė	•	•			٠		•	•	000	•	9	٠		•			ĸ	•	,	(0)	•	•	œ	•	(E)	• :	•	•	•		(0)	•	•	•0	•	•		0	086	•	*3	•	٠		2	,				• (1)	•				•			
112	÷																•	•	ŝ			•		•			•			•		3	•	•		•										:	•	9			•	•	•	83	•:		•	٥,		83			•	•	•	-	T de				•	٠	٠						e I d		٠	្ន		-			
je.	•	•	•	700	•	7.00	•		Q		0					•	50	e.	ò		, V	•	•			•	٠				0		•	٠	20	•			ě	•	•		•	٠	ુ	•				•	•	·	•			٠	•	٠	ě			•	•	7			7./2		5		٠		•	07	,	15			203	•		c	,	1			

Ra			• •	-																																																													
36 ×3	1):4	00	¥			(()	000	(3)	٠	0.	201	,	108	×	•	•	٠	×	٠	٠		•	٠	•		•	•	•	٠	٠	٠	٠	•)	٠	*	•	×		×	÷	•	٠	٠	٠	٠	٠	•	Ol*	•))•		(2)	•	•	٠	•	٠	•		£.	3	٠	٠	٠	
(r 20)				•				•						٠									•		9	•::	•	*		Ç	•	ş		्	•		٠	63	•	•	•	-	•	ः		•		•	ì	84		rs. 75		¥.53	ı	•	٠	٠	•						
Sys	st(er	n	at	iC	:																																																											
				20																																																													

State how random and systematic errors can be minimized.

[2]

2. Electrons are arranged in energy levels around the nucleus of an atom.

(a)	Explain why	y the first ionization energy of calcium is greater than the	nat of potassium.
-----	-------------	--	-------------------

(b) The diagram represents possible electron energy levels in a hydrogen atom.

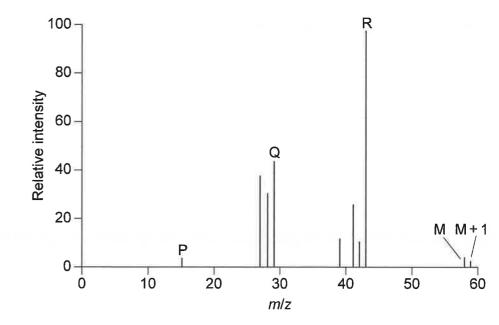
n = 0 n = 6

______ n = 3

n = 2

n=

(i) All models have limitations. Suggest **two** limitations to this model of the electron energy levels.


(This question continues on the following page)

(Question 4 continued)

(ii) Suggest the fragment causing peak **R** in the mass spectrum of butane.

(c) Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.

-	Τe	es	t:																																																					
	513	2.15		,		•	19.	2	*	•	•	P.		to		* 03	5.7	ŧ	-	*55	•	::: :	•:	<u>e</u> (1	 21	*	•	• 1			ø:	•:	: :	89 t	*	•	83	**	•	205	<u>*</u> S		59	÷			×	•		•	•00	•20	77.			
		•		,	88		•	•	•			(*)	*	•0	e :	•	co	٠	0.6		•	68	•	•	 24	80		•		9	*00			(())	*		 	**	90		**	e (s	6(6	S.	63	100	٠	600	(a)	٠	€0	•	.))•	٠		
F	₹(es	sı	ıl:	t:																																																			
					8																																																			

(This question continues on the following page)

[2]

[1]

[1]

4. Carbon forms many compounds.

(a) C₆₀ and diamond are allotropes of carbon.

(i) Outline one difference between the bonding of carbon atoms in C₆₀ and diamond. [

(ii) Explain why C₆₀ and diamond sublime at different temperatures and pressures. [2]

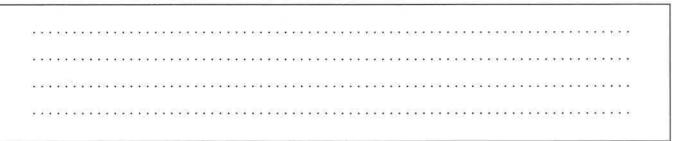
(b) (i) State two features showing that propane and butane are members of the same homologous series.

[2]

(This question continues on the following page)

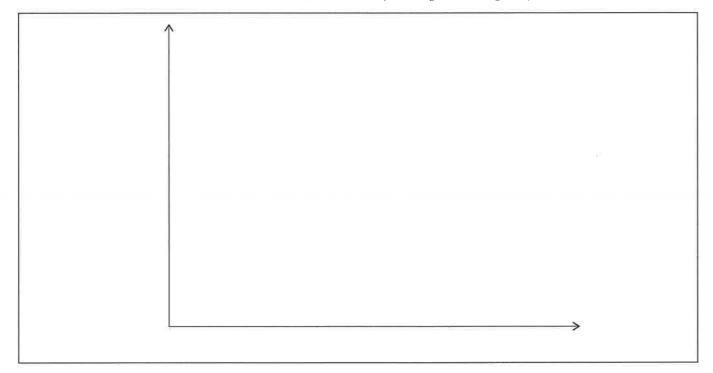
Turn over

(Question 2 continued)

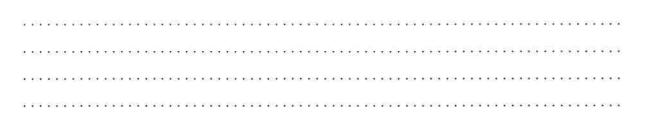

- (ii) Draw an arrow, labelled **X**, to represent the electron transition for the ionization of a hydrogen atom in the ground state.
- (iii) Draw an arrow, labelled **Z**, to represent the lowest energy electron transition in the visible spectrum.

3. Sulfur trioxide is produced from sulfur dioxide.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ mol}^{-1}$


(a) Outline, giving a reason, the effect of a catalyst on a reaction.

[2]


- (b) The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.
 - (i) On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T_1 and T_2 , where $T_2 > T_1$.

[3]

(ii) Explain the effect of increasing temperature on the yield of SO₃.

[2]

(This question continues on the following page)

Que	estion	1 3 co	ntinued)	
	(c)	(i)	State the product formed from the reaction of SO ₃ with water,	[1]
	82.5	3/1/153 1		
		(ii)	State the meaning of a strong Brønsted–Lowry acid.	[2]
	50.5			
	634 X	4 × 4 × 4		
	Par			
	(d)		c acid, HNO_3 , is another strong Brønsted–Lowry acid. Its conjugate base is the te ion, NO_3^-	
		(i)	Draw the Lewis structure of NO	[1]

		(ii)		Ε	ΧĮ	ol	ai	n	tl	16	9 (el	e	ct	rc	r	1	do	or	n	а	in	(ge	90	n	ne	et	ry	C	of	N	О	3	*																				
• •		•	•))		 •	• (•	•		•0•	0.00	٠		1))			•		9	0.00	•	(A)	80					•	• (6)		٠) ()	• ()		•	•	•				• 3			•			***	٠		1	•00	• •		9
130		œ.	.	. :	٠	533		835	٠	٠		::::	×	*	٠	•33	: :	930	S15		:	32	٠	·	50	5 6				×	:0	: :	٠	÷	18		٠	*	•			্ৰ	16	 ः	E.	•	ž.	Si	•	٠	: :	e.	*55	22	: 1	
::	•		•	. ,	٠	•		e.	٠	ě			×	/ *	R	•	. ,	V.		·		٠			23	2				•	•		٠	•	•)))			٠	•)))	. ,	63	•	•e			•	×.	- 10	٠	•			•	• (•		

