Please do not write on this page.

Answers written on this page will not be marked.

Mathematics: applications and interpretation Higher level Paper 1

Friday 6 May 2022 (afternoon)

Instructions to candidates

2 hours

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · A graphic display calculator is required for this paper.
- Answer all questions.
- Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [110 marks].

25 pages

2222-7211 © International Baccalaureate Organization 2022

-2 - 2222-

Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 6]

A group of 130 applicants applied for admission into either the Arts programme or the Sciences programme at a university. The outcomes of their applications are shown in the following table.

	Accepted	Rejected
Arts programme	17	24
Sciences programme	25	64

(a) Find the probability that a randomly chosen applicant from this group was accepted by the university.

[1]

An applicant is chosen at random from this group. It is found that they were accepted into the programme of their choice.

(b) Find the probability that the applicant applied for the Arts programme.

[2]

Two different applicants are chosen at random from the original group.

(c) Find the probability that both applicants applied to the Arts programme.

[3]

(This question continues on the following page)

Please do not write on this page.

Answers written on this page will not be marked.

28EP27

(Question 1 continued)

i i	ě		Saf					7,5		10.			e de	10							• ()		•	0			•	•	•	•		•	•		•	٠	٠		•		•										•			•			•	•			•	4	•			•	23	•	٠	S.	196
		•	0.00	6	•);;		• <u>5</u> \	r(c		90)•			99	- 23			9	•(0		5 5	•		::3	• 5.3	•	•		*	٠	*	٠	•	ŧ	81	Ť			3		÷		æ	,	(E)	ė				,		٠	÷	8	•		•	٠	٠		Č	•	٠	٠	٠	•	٠) é	7.0	(•)	•	•00
:																																																																							
		10			• ()		•				9		9					, in			2101							•		•		٠.	ì	354	•	•	97		94	•		्र		:::		33	853	-		ः			œ.	×	i la	•	٠	•	•		•		55 .			٠		•	*	5	•09
ie.		2.0	23	5	:8	•		22	,			33	(C)	187			1.5	200	- 1		500		17	ij	•	•00	Ţ	•	٠	٠		٠	•	•	•	٠	٠			7.	•	0.								٠	٠		•	•	•	•	٠	•	•		•	٠	•			Š	16	V	7.		•
::4																																																																		ż	1,7	•	٠	7.	25
		77.			•						3	23				23	23	211	33		. 05	. 5	•	•	•	600	2	•		٠	ě	•		•				•	ۥ	•		•			9		e G	02.5	,	•	٠					×	٠	•	۰	806	•	٠) E (#	8	i e	*	(8)	•	•00
i.		2)(2		,	500		7.1		,	743		i i	o)			•			•		•)		•	•	•	•		•	٠			•	•	•	•											3),	. 114		-				-				•	•	į		•	•				*	::4	•	٠	ű.	8 33
÷		((*	0		•		•::	O.		63	,		963	•6	•	•		•	- 10	•	507		:33	•	٠	:::	ř	*	٠	ै	*		•	্	٠			*						465		9.1	2	900	,	٠	Ċ	ť	্ত	8		٠	÷		•	÷	٠	٠	•	•		٠	•	•	٠	•	•
																																																																						3	
	•				•		• (() (-	ě		9			•	•		· V	9	. 7			.10		•											•		-					8		83		183		S:•	:		31 4		•	9			٠	G	¥	٠				٠		٠	(v)	×	¥0

-3-

Please do not write on this page.

Answers written on this page will not be marked.

[2]

[4]

[2]

[Maximum mark: 8]

The owner of a convenience store installs two security cameras, represented by points C1 and C2. Both cameras point towards the centre of the store's cash register, represented by the point R.

The following diagram shows this information on a cross-section of the store.

The cameras are positioned at a height of 3.1 m, and the horizontal distance between the cameras is 6.4 m. The cash register is sitting on a counter so that its centre, R, is 1.0 m above the floor.

The distance from Camera 1 to the centre of the cash register is 2.8 m.

- Determine the angle of depression from Camera 1 to the centre of the cash register. Give your answer in degrees.
- Calculate the distance from Camera 2 to the centre of the cash register.
- Without further calculation, determine which camera has the largest angle of

depression to the centre of the cash register. Justify your response.

(This question continues on the following page)

(Question 17 continued)

MOROR ED MINIS	602 803 E 803 E 803 F	218 MOR NORTH MOR NOW IN MORE	ACT		NOT AND REASON FOR RESIDENCE AND RESIDENCE
KINK OF SHIE	er kontra panta				
					tot tot doubt tot total total total
53253535	**********	* 12 * 10 * 10 * 10 * 10 * 10 * 10 * 10	ES ESE ES ESE ES		NOT 500 PORTORO TO FREE PORTOR
	F34 F3 F F F F F F F F	9 C E E E E E E E E E E E	RON GOROGE ROSE GOROGE ROSE	4 80000 900 RD 90000 804 90	
	e e e e e e e e e e e e				
			te nea ta nea ta		***************
0.000.00	910 KS 8350 KS 806	**************************************	E * * * * * * * * * * * * * * * * * * *	* KIROKOKOK KOK RIJON KIR KIR	**** *** ***** *** ***
60 80 80 80 80 80 80 80 80 80 80 80 80 80	OCS ES NOSE ES NO				
					Files to be the first to a constant to
		******	5.8 S.S.S.B.S. S.S.S. C.S	THE ROLL FOR SOMETHING FO	PRINCE ELECTRONICS BUT MUCHE BUT M
600 60008 600 80	**** *** **** *** ***	DESCRIPTION NOTES AND ADMINISTRA	CA COURTA COURS		· Maria par maria pia mana pia d

[3]

17. [Maximum mark: 8]

The cross-section of a beach is modelled by the equation $y = 0.02x^2$ for $0 \le x \le 10$ where y is the height of the beach (in metres) at a horizontal distance x metres from an origin. t is the time in hours after low tide.

At t = 0 the water is at the point (0, 0). The height of the water rises at a rate of 0.2 metres per hour. The point W(x(t), y(t)) indicates where the water level meets the beach at time t.

(a) When W has an x-coordinate equal to 1, find the horizontal component of the velocity of W.

A snail is modelled as a single point. At t=0 it is positioned at (1, 0.02). The snail travels away from the incoming water at a speed of 1 metre per hour in the direction along the curve of the cross-section of the beach. The following diagram shows this for a value of t, such that t>0.

- (b) (i) Find the time taken for the snail to reach the point (10, 2).
 - (ii) Hence show that the snail reaches the point (10, 2) before the water does. [5]

(This question continues on the following page)

(Question 2 continued)

5 235	•		-			•		0.0		211	100			Ö		÷	Č	•		9 9				•	.55		22	55	3 3			-8	- 63	8 3		ಿ		-								-					-	
. 63	***	• :	63		(*)	* 1	63	*	•	G.	10	. :		88	199			٠	• 3				•		•	*::	·:	13		23	1	:21	5	99	:00	-2	188				1502	•		•	1.5		(1)	10	; ;	į.	٠	•
•)(•	•	•	•		٠	÷	•	•		 :					Yes		•	•		2 %					-	23		100	: :		4	8	2	2013	e la	S.P	•	٠	•		75	(()		40			1000	å(S)	2 2	1024	•	٠
1 52	*10	•	100		٠	*		**	302	 2ª.	ŧ	: :		o.	:00			e.			•	٠	ं		•			•		0.	٠	• (•	٠			٠	•		٠	•)	•	• •	•				•	•		•	٠
. 109	*2		100				•	•	*)[X		• •	٠	•))))		٠	9	• :	. ×	٠	٠	•		:]•			•		•	÷	• 10 •	*			C.S.	23	٠	:::		88	* /S	• •		9 * :	•	88	•	2.2	93	٠	*
37			•		٠	Ţ			Sall S		į.		٠.	S¥	•65		•	•			•	•		×	•			•			•	•	×	•		•	•	•	œ	. ,	659	% 0		×	396	• •	£39¢	•05		27	*	٠
****	*:	•	•		٠	ă.		ř	•	•	•	. ,	•	ě	•((٠	٠			٠	٠	•			•		٠		•	٠		÷	•				•	÷	2 7	774				104						٠	•
•	•		•	٠.		•	00%	×	(*))	::	*			∂ ₹	•33		:•:	i.	53				r:	: :		• 63	::	100		•	÷.	,	*	.	: :	2	*:00	٠	25	. :	111	7.	5.05	12.		•	5.75	•/	9		ě	ě
	•				•	2		×	•	 GR.	æ	. ;		(*)	. (3)		7.0	•	83		200	٠	1 (2)			(0)	es.	•	9 8	•	×	•::	•	90		×	100		(63)		628	÷	•:•	*		•		•		•	٠	٠
	•	•	•		•	•		•	•	•	•			٠	211		•		100		•	٠		. :	a	3. G								•	2 2		23				8%	•8	•	2	: i	•	S	¥99	2 2		•	

[2]

16. [Maximum mark: 7]

The position vector of a particle, P, relative to a fixed origin O at time t is given by

$$\vec{OP} = \begin{pmatrix} \sin(t^2) \\ \cos(t^2) \end{pmatrix}.$$

- (a) Find the velocity vector of P.
- (b) Show that the acceleration vector of P is never parallel to the position vector of P. [5]

9 8		•				٠		*	• ;•		•	٠	•	•		•		•	•	•	•	• •	•	•		•		٠		•	9 9			9.0	•	• 57	7.0	2. 7	90.20	•		*:	1 1	. (*)	÷	*Sit	<u>.</u>		:::	* *	•	o t	•	
. 1	es*	*3	9)	•	: ::ii	÷	•	•	18		•	÷	•=		83.	*:	23	:0	. :	•	85	500	đ	٠		es.		٠		*0	9.3	0 (0)	×	100	•60	• () •	•		600	*	639	100		696	•	•	٠	•	•00			00		Ü,
* *	- 14	•	٠		•	٠	•		0		•	•	• ?		70 .	900	•	•	* >		٠	•::•	*3	(*)		×		•		÷	3 3			100	3 00		ě					6 53		•	¥	•	¥.	•	¥15			4		
4.2			4				٠					٠	e	: :	•	•		20					•			Ŷ		•		٠	• •		٠	• •	•		•	•	•		•	•()		•	٠	•)•	•		•	•	٠	٠		
•	٠	•	٠			ŝ	٠	•	•	9	٠	٠	ė			•	0	200	3 5	0.20	•		÷			23	test	*:	::	ń		٠		:05	***	• :	• 5		8.4	•		3 00	, ,		٠			•	•	. ,		9	•	
	æ	93				×	٠	•	•		•	•	•		/a•	•		•::	٠,		٠		8.	(9)	• (•	3	•) (•	90		•		• •	٠	• :	.		•	. ,		• (•	. ,	e/#	٠		•	٠.				•		
(3	**	•	• 6		×	٠				e a	2	•		() à	3 88		200	2)	0340	٠		8	•		•	•	*		•	: :		•	50	20		ŀ			• 7	10	270		•	ù		9		•		•	٠		
20		20				•					•	٠	•		٠	•		-		•	•		•	•		٠	• 6	٠		*		•		•	•		•		7.0	•)	505	2()	. :	b)(*/	٠							٠		
	5.	•	ċ	:00		*	•	٠		1	2). *	÷	•	:		*88				9.5	*9	• •	•	31.2		æ	:00:	*	• • •	*	• •		•	•	*:			х :	0; *	*00	e a	•	, ,	000	(*)	ra.	83		(0.3)	. ,	•	*	•	
).	æ.	•		• 10	Ø.	٠		•	•				•		•	•		•		્	•			3 5		9	• ÷	×	•\(•	÷	. ,				***		•		00 °	•		6 99				.:0	83		•		=	¥		
k (a)	:	20				ě.	•	•	•			•	•		:	•					•							٠		•				• •	•		٠		9.			•					•		٠		0	٠		

Please do not write on this page,

Answers written on this page will not be marked.

[3]

3. [Maximum mark: 7]

A polygraph test is used to determine whether people are telling the truth or not, but it is not completely accurate. When a person tells the truth, they have a 20% chance of failing the test. Each test outcome is independent of any previous test outcome.

10 people take a polygraph test and all 10 tell the truth.

- a) Calculate the expected number of people who will pass this polygraph test. [2]
- (b) Calculate the probability that exactly 4 people will fail this polygraph test. [2]
 - (c) Determine the probability that fewer than 7 people will pass this polygraph test.

I RECORD TO SOM IN NOTE OF SOMEON OF SOME OF SOME OF SOMEON SOME	and the state the state the state the state and the state to
N PTS STATES HIS MINER HIS WOODS HIS KINCENINGS HIS STATES HIS STATES HIS ALMOSTHUS HER HIS	CO EO
	en na man na kom en manaren ha aren ha aren ea
3 P3 KKX E3 KKX E4 KKX E4 KKX E4 P4 KX E4 F4 KX E4 F4 KX E4 F4 KX E4 F4	
3 83 833 83 838 83 838 83 839 43 83 83 83 83 83 83 83 83 83 83 83 83 83	NA 112 KOM NA NAM NA NAMANA NA NAMA 112 MANE NA

Please do not write on this page.

Answers written on this page will not be marked.

Turn over

[2]

4. [Maximum mark: 7]

The graphs of y = 6 - x and $y = 1.5x^2 - 2.5x + 3$ intersect at (2, 4) and (-1, 7), as shown in the following diagrams.

In **diagram 1**, the region enclosed by the lines y = 6 - x, x = -1, x = 2 and the x-axis has been shaded.

diagram not to scale

Diagram 1

(a) Calculate the area of the shaded region in diagram 1.

[2]

In **diagram 2**, the region enclosed by the curve $y = 1.5x^2 - 2.5x + 3$, and the lines x = -1, x = 2 and the x-axis has been shaded.

diagram not to scale

Diagram 2

- (b) (i) Write down an integral for the area of the shaded region in diagram 2.
 - (ii) Calculate the area of this region.

[3]

(c) Hence, determine the area enclosed between y = 6 - x and $y = 1.5x^2 - 2.5x + 3$.

[2]

(This question continues on the following page)

The equation of the line y = mx + c can be expressed in vector form $r = a + \lambda b$.

(a) Find the vectors a and b in terms of m and/or c.

The matrix M is defined by $\begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix}$.

(b) Find the value of $\det M$. [1]

The line y = mx + c (where $m \neq -2$) is transformed into a new line using the transformation described by matrix M.

(c) Show that the equation of the resulting line does not depend on m or c. [4]

6 23 3	•			•				•		•				•								•			•		•					•		•	• •	•	•	•	•	10	•))		•	•	•		•		•
	•		• •	•	•	•	٠	•		•		ė		ě	•		•			٠		20	99		et.		٠	23	÷				ं	٠	tot.	•:::		٠	e i	529	868			(e	500	100	•68		6.00
or ever		5 50		•				٠	•	•	•	•		•	•	e ×	•			×	6.3	6	•) •	(*)	×			63	•	• •				٠	•::•	•00		*		3	•55		(0)	×	153		•	ş 9	0.000
× 696 ×	e • 5	(T)																																															
2 193 5				•		•	•	•	•	•		٠		•	•		•		٠			•		٠	٠	٠.	•		•)			•		•	•	•		٠		ij.	•50	, ,	ŋŧ	7	•	٠	r.C.		
* 5.7	5,00	10		•				٠	•	188	1.5	• >			*:	::	•				101	::		٠	15.	9.0	•	• •	:0	. ,	95 9 5			88	•	•000			٠,٠		• (6)	. ,	1	•	•:::	*	œs		53.00
× 1551 3		•			6(e.s		•	•	:::::X	•		•		<.	•	•	**			٠	-31	*) <u>.</u>			•		•	9 9	0.000		(C)	٠	• 1	•86		•		0.00	\$ (2)				2000	120	7.00		674 I
32 403 4		-		•		٠.	83.	•				•			•		•			٠							•		è			٠	77	•	• •	•		•			• 0	9	٠	•	•) •	•	•	•	
	•	•	• •		•	•	•	•	•	•		•		, i	•	•	•		٠		•	•			•		•	• •	100		100	*		*:		•			•	S.	****		٠	ð.	100		۰		225
s tet s	5378	2 150					67	100	ः	100		(*);	: :	÷	٠		•		•		• •	*3		•		•	*	٠.	•		• •	•	0	8 53	• •	•3			• •	(⊙•	•				• 0)			٠.	66 9
			××	ea 9	100	٠.	669 -	•10	003.e	•(0)		100		() i	.		ŧS.	. ,		•		6 (3)		(4)		::::::::::::::::::::::::::::::::::::::	*		÷		•	ě.		•		i S		•	٠.	855	#19 #19	1 :	٠	:			•		ili.
0 50 1			0.5	71 1	1000	0 0	1992	2000																																									

Turn over

14. [Maximum mark: 4]

The shape of a vase is formed by rotating a curve about the y-axis.

The vase is $10\,\mathrm{cm}$ high. The internal radius of the vase is measured at $2\,\mathrm{cm}$ intervals along the height:

Height (cm)	Radius (cm)
0	4
2	6
4	8
6	7
8	3
10	5

Use the trapezoidal rule to estimate the volume of water that the vase can hold.

	g i i					•			85	1		83			9		٠		•	• 00		٠	•	¥.	(0)	٠	63	9	•	•	•	٠		٠	56	, ,			•)	٠	•	-			8	9	*	٠	•	973	*	٠	*	2	S.A.	*5	•	Ť	***	* 1	•33	•13			: 1	
,			•	•	·	•				-					3.0	•	٠		•	•		٠		¥		•			**	•		•	•	ş	•33	. ;		24	40	2				7	×	•	٠		٠		٠	•	•	٠	٠	٠	•	٠	•	•	•0	•(69		
*	0	• *	٠	÷		٠	•		9		95	:::		83	·	S.*	٠	ti	i.	•		1		•	•	7	10	•	•	•	ŀ	٠	•	٠	•		•		9	٠	•		٠	•	•							٠	•		•	•	•	÷	•		. 23	•		233		
		•		. S.					65	653			,		1 9	3(6	19	×		•	0	*	•	*		œ	•	•	•	.			۰	1,5	66		<u></u>	::	*	:	*		e ing	æ*.	•	4	٠	*	ē		·			•	Ť	٠	٠	٠	٠	*	•	•	ě		į	
3.00			•	•)		•		•						87	ne.			Į.	i.			1	:	÷	•	×	3 0		•	•		*	•	•	€		e29•	∵•	ė		•	• •		٠,	٠	•	٠		×	e:			٠	*	÷	*	(v /)	٠	•		***	•00	* *	100		
2		•	÷	80	٠	•	100		53	e e					903					•		•			٠	•	•		•	•)	÷	٠	٠					20	02					•	•	*				332	٠	•	63		×	٠	2	¥(3)		\$ (5)	•		6 50		
6	•		×	•	•	•			100	63	0	•(0)		101	679		•	×				,	: ·	*	9.0	÷	:0		•	•	89	* *		*	fil		100	ं	•		7/		,	ં	٠	٠	٠		٠			٠		•	•	•	٠	•	•			•	8	.04	i	
9			4		•	ŭ,	•11		677	25				27	83		803	×	٠		200		83 ;		٠	×	ě	•	•	603					80		0		•		*5)	• : :		::::: ::::::::::::::::::::::::::::::::			٠	50	ě			•	ং	80	٠		٠	*	. 55	•	*:	•		•		
37	٠	•		*		•	•				9			3	Ö,		(•	•	•	•			•	•		3	•					1 1	100			11		-	*	•				:::: :::::::::::::::::::::::::::::::::		٠		ė.	٠	•		·	•	×		٠	œ.	×	÷		٠	•	×	•	ė	
19		•	×	•	٠	٠	•		•	63	٠	•		. (1)	•		0.0	•	30	×.	:03			*	5	e.	•		٠	ř.		6.3	15.	· ·	*	•			•	•	٠	•			0.00	٠	•	•	٠	•	9		٠	•	•	•	•	ě	•							
3		•		٠			£2			•		•		25	.50		e G	•					530		÷	3	ĸ	•	٠	•3	600	k))#		2.0	*:	*			×		*	• ()		S).•	٠	٠	*	:00	÷	•		5 5	•	*	٠	٠	٠	*		31	•	•	ō.	700	,	
	٠	•	,		ċ	T.	•	•	•	•	•	•			•			*	٠	•				i i	20		•	•						- 14	•	•		CV2	*					89	٠	/ a *	9	*00	•		0.00		•	٠	٠	٠	C	*	*	•))		•3		ei e		

(e) (e)	•	•	•))•	9		٠		•			•	(*	٠	•	7	:0	8 8	000				*	٠	•		•		• •		::	*	Ť	•		1		5	2		•				ं	65	•			0.5			•		•	O.	•0	2.1	5.5		•		•	•	
		•					-				•	89	٠	•	(e)	€3		6	03		34	×			6 3		•8		0	ા•	•		٠			•		•	٠	•	×	•	•	•	S-8	•	•	• ;•	0.96	•		***	505	4 8	60 9	:8	*5	6.5	604	*	99 .	ŧ.	٠	
	٠	•	•				•		•	٠	•		•		4	•	2		113		्		•	٠					273	81:	2	83	÷	٠	a.		2	•			×				G.	œ	• 5		6590	×	٠	• 10		i ¥	254	90	• ()	× +		÷	23	(0)		
* **	æ	*:	•39		101			٠		•	ti		•	•		3 (0)		, ,	· (C		ं	•	٠	٠	•	٠	•			•	٠	•	•	٠	•			•	•	•	ě	•		•	ě	•3			·	•		•		į	N.	•	•	2 1	100		774	•		
w Ko	٠	•	ŧС.		•	,			٠	÷	*	C)÷	٠	٠	*	•65		•	6,9	•	:	•	٠	÷	•10	8	*00	•00			. 20	ji je	**	٠	٠	ilei	,	٠	٠	•	t	:::			æ.	**	913			*	90	•	63	: :	607	*:		2.1	12.5	•	è	٠		
* *	4								ě	•	į.	S,	•	٠	ŭ.	•55			134		::a	•	٠	٠	•		*	•		•	*	Ç.	œ	*3	•	• :: •		(4)	٠	63				٠	34	*	•]]		:	٠	•	•	658	£ 8	338	•0	*)	* *	E CO	÷	13	•		
		•	•/]			•	٠	ě	7.00	•	•	•	•	٠	٠	•	ė	•					•	٠			•				2							٠		ŝ			113		S.				્ર		•	•		í	834	ě:			(S)	20		×	•	
× *:	ė	•	• / (-	. ,				•				æ	,	٠	÷	es:		13			12.5	*	٠	•	•	ŧ.	•						7	٠	Ţ		,		Š	•	÷			٠		•	•		•	•	•	•	•	1 8	ì	•	•			•	ŀ	•	•	
	i.	*	•		-23	3		5 Ox	è	×	٠				×	•00	,	•379	C		99•		٠	٠	•(3		•	•			٠		٠) * ()	٠	•00•				•	٠	•	77.	•		×	•?//			•	*	·	505	5 5	82 t	88	• • •	5.5	505	.00		*	٠	
• •	•	•	•		• 0		•	•		٠		•		٠	٠	ò			(2)			•		•		÷	•	•			÷	•	•	•	×	:00s			•	•:9	î.		00		- 1	•	•55		-	•	•	•		(*	33 4	(6 0)	• (0)	× +		æ	•	•		
* *	2	*3	•	4 4	: 11:			•	•	: • • • • • • • • • • • • • • • • • • •	•	্ৰ	٠	ie.	ೆ	•	•		110			•	٠	٠	•		•	•			•	٠	٠	•	•	•))•		٠	0	•	٠		•		٠		•		٠	٠	٠	•	•	•	V.	•		•	J.	¥	•	•		
9 ¥3		*																	00						•00			*10		000		-00				•:::				• 22	×	•00					•:::						P. 27		004		one of							

[Maximum mark: 8]

The graph below shows the average savings, S thousand dollars, of a group of university graduates as a function of t, the number of years after graduating from university.

Write down one feature of this graph which suggests a cubic function might be appropriate to model this scenario.

[1]

The equation of the model can be expressed in the form $S = at^3 + bt^2 + ct + d$, where a, b, c and d are real constants.

The graph of the model must pass through the following four points.

t	0	1	2	3
S	-5	3	-1	-5

- Write down the value of d.
 - Write down three simultaneous equations for a, b and c.
 - Hence, or otherwise, find the values of a, b and c.

[4]

A negative value of S indicates that a graduate is expected to be in debt.

Use the model to determine the total length of time, in years, for which a graduate is expected to be in debt after graduating from university.

[3]

(This question continues on the following page)

An electric circuit has two power sources. The voltage, V_1 , provided by the first power source, at time t, is modelled by

$$V_1 = \text{Re}(2e^{3ti}).$$

The voltage, V_2 , provided by the second power source is modelled by

$$V_2 = \text{Re}(5e^{(3t+4)i}).$$

The total voltage in the circuit, V_T , is given by

$$V_T = V_1 + V_2$$

Find an expression for V_T in the form $A\cos(Bt+C)$, where A, B and C are real constants.

[4]

Hence write down the maximum voltage in the circuit.

[1]

total or see a	 C	** *** ** *** ** * * * * * * * * * * * *

S ROOM OF SERVICE	 	

٠	٠		٠	•33	•	٠	•	•		•	0		•				*3	•				•	٠	2	ě				•	•	٠	è		•	٠	٠	• (٠	٠	•	٠	•	•			•	•	Ñ.	•	•		1/61	ŧ	
•	•								6		•		•	•		ij.	•	•			٠		٠	٠	÷		è	٠	9	5.2	•	•			٠	•	:::	্	*	•		ĵ.	•	e co	80	•	•	•	٠	•		e se	×	
•	•	•	•	•	200	٠	•	•			3	in t	**	•	*		20	*	8 1		*		e e	•	•		*		æ	1)7)1		*	r)			٠	• •		•	•:•		((*	(*)		 (i)	*:	9.0		X		٠.		*3	
×	÷	ð	•)\	•	lo:		٠	•	,	•	0.	99	*0	•);		3		•	• (e e		9	×	•	×.	600	•	•			•				•	•						1.0	÷		102				•	•	• •	•	•	

12. [Maximum mark: 6]

The sex of cuttlefish is difficult to determine visually, so it is often found by weighing the cuttlefish.

The weights of adult male cuttlefish are known to be normally distributed with mean $10\,\mathrm{kg}$ and standard deviation $0.5\,\mathrm{kg}.$

The weights of adult female cuttlefish are known to be normally distributed with mean $12\,\mathrm{kg}$ and standard deviation $1\,\mathrm{kg}$.

A zoologist uses the null hypothesis that in the absence of information a cuttlefish is male.

If the weight is found to be above $11.5\,\mathrm{kg}$ the cuttlefish is classified as female.

(a)	Find the probabilit	y of making a Ty	ype I error when weig	ghing a male cuttlefish.	[2
-----	---------------------	------------------	-----------------------	--------------------------	----

(b) Find the probability of making a Type II error when weighing a female cuttlefish. [2]

90% of adult cuttlefish are male.

(c) Find the probability of making an error using the zoologist's method.	[;
---	----

			302	V.	• (1)			ě		•		્	į.	•	*	•	ű.	93		•			200		200	•	×	•		3 10		33		0.0	•	è	•	•	٠	ě	•	, 9	0)	()	•3	*	• : •		•3	•	*(0)	- 1-0	*	æ	•	•		æ	ĸ	9.0			*	÷
10		: :		51	• /	,	9.0		٠	٠	1	٠	٠	٠	٠	٠	•	•		٠	•	•	•			•		•		•	•				•		•	•	٠	ž	. 199		b/.	•	•				ž.	Ţ	• 3		÷	•	200		í le	S	¥3	43	25	604	•0	
6	())(*	6.5	•	*:	• (*		/ (*	*	•	٠	۰	•	• 5	ė	800	•	000	•		•25		•	•	1	•	•	•		88	,			2		•	e.	ė	•			Ċ	5	•		٠		•		•	•	٠	•		1	٠	•			٠	•	•
•	•		::	•	•			*	٠		ě	::	•		٠	٠	•	× .		•			•		•	e2		•		•	•	• : :		-		•			(0)	٠	9 00				*	•	•) <u>•</u>	•	•	•	0.5	•	()	X (c)	•00	9.4		80	•		2	•	÷
•	•		į.	•	•		•		٠	•		٠	•	٠	٠	5.	•	*	•	•				20						131			- 5					•	•		6 (3)	. :		814	•			•	•3	į.			ě,	:: :	*	. ()	ě e	•	ř:	•);			•	
*5	• •		000	÷	•		102	ř	٠	S *	ŧ		*:	٠	٠		•	£.	•	٠			•	•				•		•	•					•	•	٠	٠	•	•		(•	•			٠	•	•	•		•	٠	•		÷	٠	•				100	71
*	•			(a)	•		0	×			÷	÷	96	٠		e		*	•	٠	•		•	911				•	•	• (•	•				٠	•	٠	•	•	5 00		950	S.P.	•0			73 * :	•	٠	•	::	*	**	50		5 5	::: ::::	Ħ	5 9			ŧ).T
•	• •	1	•	٠	٠		94		•			7.				2	į	:		٠				•		. :		•						0		*			٠	٠	•		00		•				*(1)	٠	•	•	*		•	•)[•		•	*	•	• (•		•8	2
Ť	•		31	Ť	• :			•	٠	•	*	1/*	,		7	ń	•	٠	٠	٠		•	•		•	-57	•	•			•	•)•	•	•	٠	٠		•			٠		4				7			7		20			્					ě	•
٠	***			٠	•		•))(•	٠	. •	۰	*		۰	100	•	• 11	٠	٠		٠	£9	•	•	• ? !	s	•3	•	80	•	e.	100	99		9 11	28.5	8		٠		ŧ.	•			::	ti			0.5	53	•	•		9	ē		•		8	ŝ			•	٠	•
				•			99		•	-	ě	2.4		•	Œ.		÷	*	•	a.	e)	è	•	•		€SS		•		•				0	•	×		٠	•	3	•				•))	œ	•		*1	è	• •		٠		•	•	6 6	•	٠	•55		•	•	,

(Question 5 continued)

2 10	•				•		្			•		•		:	488		è			69	÷	٠		•		χ,	35 4	• 77	(9)	•			•	• 0000	•	(0))		-	1	(4)	0.7	(0)	٠		•);		•	٠	•05•	18		• •	
8.6	•				٠		٠			•	•)•	•	•	٠	•				•		٠	٠		.00			10								÷) is		·	•		. 33		•	•		•			813
* 6	÷	X (1	•	,				•.0		::		•		SŤ	*53	:::	•	e#	• :				-23	•				•		•///	. ,		•		ě	• •		•		y. i.	• 0	٠	÷	•	•		٠	٠		•	•	• •	•
* *		•		ē	â.		٠			•	(a)			0.	• •	• •	•	(3	• • •	• •	•	•	639	130	(*)	٠,	⊘ †	1673	•	•	. ,	(:S#)		•::•	×	• •		3	×::		•	٠	•	e x	•			٠	9.3	80		• •	238
* 8							•	•	. 1	974	. //			35	.			e.		854		·		•	•		05	83		. (3)		6540	9	100	20			i i		60.	2 (3)	٠	*	e a	¥(3)	. ,	•	÷		E	9 3	•//•	(5 4)
	3*						٠	• •		3/1	•		,	Ç.	•		٠	٠				•		٠	٠		Ţ.	•		•](٠	٠	• •	٠	٠.		٠		٠	•	٠	•		•)		٠	•		•			
* *	٠		•) •		×		٠	•	. ,	•	•))) :	•	1/3	•)	•		e e	•	s			•		•	*03	s:	•		۰		•	*	•		29			•	•	•	•	:0	: :	٠	*	• •	to			•
4.2		23		E				.			.			() .	150		•			0.0	ŧ				(i c)	. ,		***	•	•		(a)	•	•:•	£.			24		•	• :		•		•(0			٠	• (•	•0			
9.5	٠					٠.					•			()*	• (•		٠	•		٠	ä					184		17	200					¥.					1	6%		•		•		•		80	22			Sią.
* 6				•		•	×	•			.0	• :		3. *	*3	275	•	S.			•	÷	23		1.0		ē1 7	.	90	5(5)			,	•		.,		ě		٠	ò		•		9.0		٠	À		8			•
2.4	1			ē	×			•			(.)			() (•	• •	•				•	×			(03	٠,	:: ::	.00	0.00	•00		(9)	٠		•	. 19	c e			03	•		•	e y	900		(1)	٠	638	•			
8.0	٠							•		94	•			7.										*			854	.		¥150					•			30			167				¥33					¥()		٠.	

[3]

[3]

6. [Maximum mark: 5]

Consider the following directed network.

(a) Write down the adjacency matrix for this network.

[2]

(b) Determine the number of different walks of length 5 that start and end at the same vertex. [3]

			nin na kanalasa ka kasa ka k	ENALE SEA SE SEASSE SAAS
000 to 1000 to 10			COCHES REPORTED ASSESSMENT ASSES	COURSE FOR EST FOLVOS ESTRE
3808 ASA MONOE NO 408			noner en brece en blang yn y	
nana ana anakanana an				
			tidades to teach the manager o	
THE VOLUME TO A SECOND SECOND		at the right for southern sin	S 8000 800 8000 600 800 800 800 8	CARCINIA SOLINICIA NO ROSCIA NO ROSC
2008 604 KONTROP 608			THE REPORT OF THE PERSON OF	
	1 1500 PA PA PA PA PA PA	**********		
		dia na sea sa sea sa		NA ROSCE DIE KORDE DIE ROSCE DIE ROSC
3 KK3 K3 K1K3		************	era es esensa es esga ,	

1. [Maximum mark: 6]

Juliana plans to invest money for 10 years in an account paying 3.5% interest, compounded annually. She expects the annual inflation rate to be 2% per year throughout the 10-year period.

Juliana would like her investment to be worth a real value of \$4000, compared to current values, at the end of the 10-year period. She is considering two options.

Option 1: Make a one-time investment at the start of the 10-year period.

Option 2: Invest \$1000 at the start of the 10-year period and then invest x into the account at the end of each year (including the first and last years).

(a) For option 1, determine the minimum amount Juliana would need to invest. Give your answer to the nearest dollar.

(b) For option 2, find the minimum value of x that Juliana would need to invest each year. Give your answer to the nearest dollar.

	•	•	•		•	•	•	(i)*	*			1	•0		12.	3	•		(*)	4	•		8.	•		*	•	*	ŧ.	• •	:					S.	****	100	٠		909	*:	•		23 5	•	9/00	63		•	٠	•	25		•	٠
e.	•60	• • •	•	O.	**	•		83 .	*0			⊙ •	* 22			æ	•	×	**	8 9		*	(*)		0006	***			3 :		٠	629		9	0.00	•	6 59	×	/*\	ж.	63.4	%	•			•		Ro			w.	•	20		•	•
34	•/			2 €	(6)	• •		•	•	•) •			*3			×		*	•			¥				3 24					٠			4 4		•		×	•			٠	•		9		٠	•			٠	• •	•		•	•
()2			2		•			•	•			•	•		•	•	• () •	•	•	•	•))•	*	•		ij.	• 0	• •		٠		٠		•			٠	7.0.5	•	•	: :	-13*	*			ů.		0.2			933 *	•	• :	:0		•	÷
	•0•		,		•	*():		e.	*:3	•) •	•	÷	•		٠		: () :	*			3.	*		6 5	103	ele		B	25 2	-	•	•	•	9 9	-5/10	6 €	•659 •	*	*(٠.	- 14	*8	(e)())		.¥	100	110	0.00		S10#	(e)	•	*0		•	•
æ	•		•	÷	86	•		30	803	•			•			*	•05•) . (5)		(3)	æ	/ *		e::•	X 3.0			a i		٠			3 2		134		(4)	•		· (*)	*	•		÷		11 545	•			20				•	•
79	*39		ï	:2	•			•	3 00		•	•	200	. :				4		: :			•					٠	3		٠	• •		•		•		٠	٠		•	•	•		į.	• •		•	•	ĵ.	•	•)•	•		•	•
•	•			٠	•))			٠	• (٠	٠	•	•	٠	•	· (·	ě			Ć,	ī	(*/j	. :	e.e.	500		15	e e		*:	•	•		:39	٠	•	2			33	800	•	P		1031	100	•)		(B)	•	• 6	•		•	•
8	53		٠	œ	*	1		2	:03		٠	*	933		٠	• 1		×	•)			٠	•		٠	*0.0		. •		• ()	*	• •	•	. ,	•		•	*		•:(•	199	•		6(6)	×	•0004		9000		S:•		• 3		99		
*		•	(6)	×	•00		e i	-	•00		//#		•00			21		×	•		- 34	20	•	٠.	804	3 33		•				• •												i la						.	•		•			
-					•		974	00	276			200	500												30					102	-				S.													_								

10. [Maximum mark: 5]

The function $f(x) = \ln\left(\frac{1}{x-2}\right)$ is defined for x > 2, $x \in \mathbb{R}$.

(a) Find an expression for $f^{-1}(x)$. You are not required to state a domain.

[3]

(b) Solve $f(x) = f^{-1}(x)$.

[2]

-							-																											•															
																																		062															
į,	•	٠	*	100	٠	۰	•	3	•88			: **	*	.*/	•			•		(*	•	•	•		•	 ٠	٠					•						•		•3	. :		•			٠			*
																																		•															
																																		•															
	*		: <u>*</u>	tat		u.	52	ĕ	•			100		•	٠	•		•	•)	•	•	10	•		200		•		\$		2 :		•	 	 ٠	٠	 ×			* (2)		. / •	•	•	*		æ	•	*(
																																		•													÷		•
																																		50													٠	0)	ð
	٠	٠	÷	•			•		•	٠.	,		٠	٠	٠				•		•		4		1 000		٠	303	Si.	•		3) .	3 0%	 •00		٠		٠		e		• (•	×.	•	•	•	٠	•::	*

7. [Maximum mark: 5]

The sum of an infinite geometric sequence is 9,

The first term is 4 more than the second term.

Find the third term. Justify your answer.

		110	÷.	٠.	×.	•				4000							•		 		•					٠					•	. ,		•		•	œ	•333			99	(6)	• 10	•			0.00			024	×	•	::	9 7	*::	235		
										-37		101	100	500		02	201	200	 391	25		3 1				2							812	200		20		400			0.02	Q.M		-				200							•		e	
	(6)	*	:	•		•330	•	•	*	1 (2)		٠	ð.			-9	*	1	 	•	•	5	Si)	1	•	٠				٠	•		•	•		•	٠	•		٠	3.4	•	• •	•	*	• •		• 1										
	• •	27	34		•	•00			•	•23		٠	×	•		٠	٠	•	 <u>-</u>	×	•	×	•	*		٠	100		•	٠	•		e.	•	•	•	÷	•	• :		•	*8	•	*	*	•	ţ.	•	1 :	-91	٠	• •	52				1	
		•	٠		•	•		٠	•	N.				100	:	٠	٠			•		ě.			٠	÷	•		٠	٠	•	*		٠		÷	9	• ()		٠	89	•	•	•	٠			•030	8 9		٠	6.59	•	,	• (1)	/.e•	*)	
	• .•	2	•	***	o t	1 88		•	÷	•		٠		9,0		٠	٠				•	•	• •	•	٠	•		•	٠	•	• /		٠		Ç.	•		•			•	• 1						•	2 3		•		•	4		22#C	÷	
		£	÷		-	8 10				*(:)			æ	•00			٠	• (1)	 800		•	٠	•		٠	*	•:::			•	52		٠	٠							•	ě	• •	•	Ť			•	ě	•	•		•	ě	• •			
	1177				- 4			٠		20				6 00				•	 •		•	٠			•	٠	• ()				•30		(4)			•	,					٠		•	÷		δ.	•		•	æ	•	10		• •	5/5	•	
	165	7.5				•		٠	٠			•		•0		٠	٠	200			1/3				100	÷	•			Ç.	:::		•			80	•					æ.		¥.			(in)	•				•	**	÷ :	•) (•		•	
	1003	*	90	× ,	536				35	:03	٠,	0.5	25	*63		٠	•	•	 835		•			. ē		•	•		•	•	• ()		٠			•					٠	•		•				•					20		V I			
	1792	- 21		o :		9777				200				200					 ecoe								•				#000					*0			•:::		/:•:									0.000		••				í.		
	•	-					•							-				A.000																																								
	• ()		•			•	•	•	3	•			10	•			•	•	 •	•	•					•	¥(5)			•	* 555		/*	*				•	•		(*)	•	•	•	•	• •	:10	•>1	* *	•::•	30	•	•		*11*	•	*	

8. [Maximum mark: 8]

The diagram shows a sector, OAB, of a circle with centre O and radius r, such that $\hat{AOB} = \theta$.

Sam measured the value of r to be 2 cm and the value of θ to be 30°.

(a) Use Sam's measurements to calculate the area of the sector. Give your answer to four significant figures.

[2]

It is found that Sam's measurements are accurate to only one significant figure.

(b) Find the upper bound and lower bound of the area of the sector.

[3]

(c) Find, with justification, the largest possible percentage error if the answer to part (a) is recorded as the area of the sector.

[3]

	*** *** *** *** *** *** *** *** *** **
- 69-5 40 100-500 40 1009 40 100 60 100 100 100 100 100 100 100 100	
	FR 63 (1997) 1997 1998 1998 1998 1998 1998 1998 1998
$(1,2,2,3,3) \times (1,2,3,3) \times (1$	*****************************
\$2. \$2.5 \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2. \$2.	encen campa sa kan sa kupa sa kukata 15-1747 f
ω and ω are ω are ω and ω are ω are ω and ω are ω are ω	
Let then to the the the tenths of the	FOR AN END AN ENDERS PARKED BY AND AND THE STATE IN
to known as the the regions of the or had to define all the $\mathcal{U}_{\mathcal{U}}$	

9. [Maximum mark: 8]

A psychologist records the number of digits (d) of π that a sample of IB Mathematics higher level candidates could recall.

d	2	3	4	5	6	7
Frequency	2	6	24	21	11	3

(a) Find an unbiased estimate of the population mean of d.

[1]

(b) Find an unbiased estimate of the population variance of d.

[2]

[5]

The psychologist has read that in the general population people can remember an average of 4.4 digits of π . The psychologist wants to perform a statistical test to see if IB Mathematics higher level candidates can remember more digits than the general population.

(c) H_0 : $\mu = 4.4$ is the null hypothesis for this test.

(i) State the alternative hypothesis.

(ii) Given that all assumptions for this test are satisfied, carry out an appropriate hypothesis test. State and justify your conclusion. Use a 5 % significance level.

5005		•50	• 1		•000		•20	• 75		•	,								(*)			•00		•			•-50		•					•	•0								٠	284		•		23		*	•		100		889								go.		000		2010			23	G	
																																																																				*	٩	•		
•	3	•	• \	è	• 3	. ;	•	• /	•		è			٠	٠	×	•	¥			ě				•	•						217					•	•	•		G		•	•		•		٠	•	•	•	٠	•				•		٠				į,				211		*	ŧs		
									•	•	•	•	•	•	•	٠	•		•	•	•	• 13	•	•0		Ť	US		•	•	*		•			•	N 3	÷	rin			2.5	*		•	•	i.	•	05	•	•		• 00	, ,		•			٠	S)(#	•			,	2.0		•) •	•	٠	•	(*	
5,5	,	•	93		•		S			e	•	***		•2	•	×	•		*0	•		•		•	00		•		•	•	•	•		•		•:	•))		• 00					63					÷	*	•	•			66					002			57.		223							
	,	•	9 10	C)								•)	×	90	٠	٠		٠	•	•	•	• :	•	•		•		2 5	•			•		•			•	•		-				•		•	•										٠		•		•	•	•				•		ė	•	٠	
																				. :	200					577	-34				27	-	-	200		50	200	3	.0.		53.			92	2		0																									
																																												900	٥.			50	0			500		2 2		5.		ST	7	221	•	٠	ి	•	1175		533			***		
• •		•))		S			l,			•	٠	•	•	٠			•	e.		1				8		523	8		-	•	•	•	*	:0	•	•	•				•	•	٠		٠	•	٠	•	٠	•		•	•		() •				*	84	ė	•				,		173	•	e:	٠	
• •	•	(0)		O.						10	•	±(50	•	•	•		•	•	•	•	•			0.0			0.0	. ,		•	• 0	•	•	•	•	•	100	•		•		•		•	•		•	•	•	•	•	•	•		100	•	•	•	•		•	•	•						•	•	•	
			,		G.				e e	0.0			ě.		÷	**		ě	10			89				57			16/									.//						8		į,		•							·	2	8.								0.4			. ,	•	•::		
	•				110							•	•	•			•		•	•								,	16	•	•	5 (3		•	1	33	: 2	33	88	ż	•	*	٠	÷	*:	ď	*	•	9	•				•		*	•	٠	٠]•	*	(e	٠	•	•		0	9	1 07	•0	٠	
						0.119			00		•cn	•==		•					•			on														0000			004	- 2	20.7			72	2.5	c2	-	-21		- 2				032		- 01																
																															500			5413		0000						•			•	e e	•	•00	•							•		•		•	•	•	•	•	•	•	. ::		RC 11		•	
									0.5		000	•10											٠.	٠.		83					•						4 3		00.						÷	92	93				-		- 2			- 3	352	9		85		92	-				- 72		2.5			

Turn over