

Mathematics: applications and interpretation Higher level Paper 1

8 May 2023

2 hours

Zone A afternoon | Zone B morning | Zone C afternoon

Candidate session number											

Instructions to candidates

- · Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions.
- Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: applications and interpretation formula booklet** is required for this paper.
- The maximum mark for this examination paper is [110 marks].

21 pages

Please do not write on this page,

Answers written on this page will not be marked.

24EP02

Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 7]

A player throws a basketball. The height of the basketball is modelled by

$$h(t) = -4.75t^2 + 8.75t + 1.5, t \ge 0,$$

where h is the height of the basketball above the ground, in metres, and t is the time, in seconds, after it was thrown.

(a	a) Find how long it takes for the basketball to reach its maximum height.	[2]
'	a, I man her terrigin tance for the backets and to reduct the manufacture menging	1-1

(b) Assuming that no player catches the basketball, find how long it would take for the basketball to hit the ground. [2]

Another player catches the basketball when it is at a height of 1.2 metres.

, ,				***
(c)	Find the value of t when	this player	r catches the basketball.	[2]

(d)	Write down one limitation of using $h($	t) to model the height of the basketball.	[1]	l
-----	---	---	-----	---

<u>:</u>)() .	*	ê	ě	30	•	•		10.	9		•		•		· V			ů.	210				2/3			٠	•		,					٠		ž	٠	•	S.	200		•	٨		•	٠		8	•	•	•	3	9
e 1	SIT	÷	•	•	183	*5	•	, ,		*:	11.5		•	•		S.F.	•	:05	(5)	•		17.		1/2			(.	•		v s	٠	e,			٠		*		• /	S (*)	•		٠	•	*****	•		100	*	2.	•//	53		•
• •	(i) *	96			• 10 •	•0	•			¥00	•):•		80	.	•	0.8	€3		::X	9 23			()¥	90		•:	٠	e S			٠	•	. ,		٠						•00					 (*)	•	.5	*		*	63 1	÷	8.5
: :		÷	•	ž.		÷	.						Ç	• 0			į.		•	¥.			87 4 .	\$ 8	2		×		2 3	٠.	×				¥	6.5	÷	4	*	2/1	\$ 33		•	•		•	7				* 1		ř	:
	•	•	•	÷.		•	•		(*	•		•	٠	•		٠	•		•	•		0	•	•	•		ě	ė			·				•	.).	٠	ē,	•		•0		٠	ij.	• 0 •	•	٠		•	•		• •	٠	į
* *	957#	×	(*)		•:::•	٠	• 3	٠,		89	•12	10.8	**	• ? ?	•	: **	•00	: ::::::::::::::::::::::::::::::::::::	83	5 00			839	•		• 61		r:			•	•		G.		• • •	80	31	•	::::	•00		æ	S.*I	•:::	 :•:	œ.		85	•		•:::		•
: ·	896 i		•			•	•75		100	X (1)			æ	•0		950	3 (E)		•	. 83	. 9	0.6		**	(e)			•	* >		•	•		.9	•		×	,			•33	. ,		((*)	*150*		٠		×	•	• 0	•		33
3 4	(٠	8		•			23	•		Ų.	530	•			100		33	10		54	2	37			0.00	•			•	•		9	•	• •	•	ě	•	•	200		٠	*	1001	•	•		8		• 7		E	
	:::•	*:	•		101	*	• ;			•			**	•		28\$	* 38		835	to			885	*	•		٠				٠	000			*	102			*//		***			S.D	100	 :20		- 2	. 10	8	***			
		*			•	•	•		81	:8		81	*8	•00	•		•0		:)(*)	•)))		• •		•00	•					e :		•		::÷	•		•		• ()		*00		٠	(e)		 (*)		es.			.	e::•		89
									2706	624							u.c			9.55											-		5 0	1772	om	65	20		200		200	2 2	2021	cen		2.76%	æ.		- 20	÷.	100%	200	: 8	733

2. [Maximum mark: 4]

A company that owns many restaurants wants to determine if there are differences in the quality of the food cooked for three different meals: breakfast, lunch and dinner.

Their quality assurance team randomly selects 500 items of food to inspect. The quality of this food is classified as perfect, satisfactory, or poor. The data is summarized in the following table.

			Quality						
		Perfect	Satisfactory	Poor	Total				
	Breakfast	101	124	7	232				
Meal	Lunch	68	81	5	154				
	Dinner	35	69	10	114				
	Total	204	274	22	500				

A χ^2 test at the 5% significance level is carried out to determine if there is significant evidence of a difference in the quality of the food cooked for the three meals.

The critical value for this test is 9.488.

The hypotheses for this test are:

H_o: The quality of the food and the type of meal are independent.

H₁: The quality of the food and the type of meal are not independent.

(a) Find the χ^2 statistic.

(b) State, with justification, the conclusion for this test.

(This question continues on the following page)

[2]

[2]

(Question	2 c	ontin	ued)
(Wuc2non		VIIIIII	ucu,

	sa sarata sa sona sa Kifi
4 827 24 884 25 85 85 85 85 85 85 85 85 85 85 85 85 85	eli sonuen en men en me
	es parales da mais es mai
I have no made to exercise relation he have as also as well as the first constant in the a	
g grand ind andre era are in era area made are some era where era erake era where era where era where era erake	LEGA ACTIONAL ACTIONS AND RECEIVED
	CASE ASSESS ASSESSED ASSESSED ASSESSED
	The second section of the section
	and aniate and aniate many and the second
- A BOLK OF BOLK OF BOLK OF BOLK FOR BUR BOLK DE	

Turn over

3. [Maximum mark: 7]

The following Venn diagram shows two independent events, $\it R$ and $\it S$. The values in the diagram represent probabilities.

(a) Find the value of x .	(a)	Find	the	value	of	X 12
-----------------------------	-----	------	-----	-------	----	-------------

[3]

(b) Find the value of y_*

[2]

(c) Find P(R'|S').

[2]

SE RESIDE ROS RESESSORER ASS	SA ACCRESA ASSA SESACIAL ACCA SESACIAL	#10# #10#10#15#2# #10# #10#2# #1	CA NOON MA MONORMA MANAGE	CA AND ANDREAS AND ANDREAS AND ANDREAS AND
a ment of tollow but	1 500 to the to to the	to relate to test t	THE STATES OF THE STATES OF THE	OF BUT BURNE BUT ACRUS BUR BUT BURNE BUT
3 4000 E3 6000 E0			C 690 C FO FO FO FO FO	************
				* * * * * * * * * * * * * * * * * * * *
		*** *** **** *** *** *		OR THE ROSCIE WAS ALREADOUS FOR MORE THE
			era arraguarragua arragua arragua arragua	
a beliated by belong				on the moderness accusions the means the
* *********			OR ROTERENS NOW REPORTER NEW WEIGHT	× 13 15 15 15 15 15 15 15 15 15 15 15 15 15
a radica ra vadica	a mana ka manana ma an			

4	[Maximum	mark: 61
4.	nviaximum	mark. or

Angel has \$520 in his savings account. Angel considers investing the money for 5 years with a bank. The bank offers an annual interest rate of 1.2% compounded quarterly.

(a) Calculate the amount of money Angel would have at the end of 5 years with the bank. Give your answer correct to two decimal places.

[3]

[3]

Instead of investing the money, Angel decides to buy a phone that costs \$520. At the end of 5 years, the phone will have a value of \$30. It may be assumed that the depreciation rate per year is constant.

Calculate the annual depreciation rate of the phone.

89 #68#8# \$6\$ R				
94 MOROR NOT	E-100 FOR BORDS 618 E-100	. 60 60 606 606 60 606 60 606 6	CA CHA TO DERVA DERVE DE D	
a man m		u kan san manan samananan san manan s	ES ESCIE ES ESCRETS ESCIE ES ES EL	DOIS NOT BOSING FOR BOXES FOR POPULATION
a enter ter			the field the filter we have no seen	
(* (*)(*)(* *)d		* *** **** *** **** ** *** **** *		
3469 61	# # # # # # # # # # # # # # # # # # #			
				100 100 000 000 000 000 000 000 000 000
5000 500 5000	e en en en en en en en en en			
(4004 4004 W/40)	K EN KINKER EFER		so som so som to som to som	
			EL VIOLE EL ESTA EL ESTA EN ESTA	**************
223 122 222				

Turn over

6. [Maximum mark: 5]

Ruhi buys a scoop of ice cream in the shape of a sphere with a radius of $3.4\,\mathrm{cm}$. The ice cream is served in a cone, and it may be assumed that $\frac{1}{5}$ of the volume of the ice cream is inside the cone. This is shown in the following diagram.

diagram not to scale

(a) Calculate the volume of ice cream that is not inside the cone.

[3]

The cone has a slant height of 11 cm and a radius of 3 cm.

The outside of the cone is covered with chocolate.

(b) Calculate the surface area of the cone that is covered with chocolate. Give your answer correct to the nearest cm².

_	7
.,	
	ı.
_	и.

*****	-53				8.3	3 77		•		•	 •		•		•	٠	•00	• 9	•	S¥	ě	54	₽ 33	• 1.5		•	¥53		•10	•			-	•	•	•		٠	•	\$35		٠	•				•	•	4			•		•	1 4		
• • •	• (1)	٠	•		8	•		٠	•	•	٠	٠	•)(•	•	٠	٠	•	į		٠	٠	•	•			٠	٠		٠	•		٠	٠	•	٠	• (•	*		٠	•))		٠	٠	•	•	•	•	٠	3		•	٠	٠	•		٠	•
• • ? . •	£3.	*:	•00		Œ	•		•		•60	 ٠	26	•000		۰	•	*100	• •		÷	*	ð:			e i e		**	÷	500	•		65¢	•	٠		•	*	٠	×	•000			25	100			(0)	•	*			•	75	•		0.00	
	6.9	¥	nico	E	Œ	X	. 5	٠		3 59		٠	•		٠	•	* (5)	•)		•	÷	:	•		· (*		•0	÷	*:		. ,	634	90	٠		•	*	٠		•000		٠		÷			٠	٠	÷		19	٠	•	3 (6)	. 9	600	· 190
	• (•	•	•		÷	•	. ,	٠	•	•	٠	÷	107		•	٠				٠			•		٠,	į.		÷	•	•		<u>.</u>	٠	٠	•			٠	٠	200	•	٠	•	• %			٠	٠	ŝ		•	٠	•	•			•
5. O.S.	100	83	300			100			*			97	100		٠	g#.	110	t		::*	•	ាំ	•				1 /2		Ť	*:3		iei†	Ť	•	•	No.	*	٠	:	‡SS		٠	i.	ŧia				(8)	ı.				53 5	.			:: *
k (()) *	237	×	309		3	•) (•>:	•	3¥	£39				*000		•0•	•	*	118	*	•	e(*	:3	•		(6)	•	. ,	000	(4)	•		00				•(0)			(*)	R 3		0		•	*		•	0.00	0.0	8 ()		0.	⊙⊛
		2				.	i i	•		£33	•	ः	•			÷	£0		· ·		į					٠	18	24		•			15		÷		•		¥	100			٠	P.				÷					•	277	1 4		64
	:::	te	2.13		ē	• 0		•	٠	•	٠	•	76	,	٠	٠	7//			0.	,		•			•	9	ē	*	•	;	200	è	٠	÷		٠	٠	(F)	5.0			, T	• 7		,	·	٠	Ť			٠	J.	7)	, ,	٠	٠
		•	•) ;	×		* :3	1		•	•83	(10)	ā•	6 0		(•)	.*	£3	• •	•	/.•	÷	×	**			্	*15	93	*3	• 3		(5)#	٠	•	•		٠		÷	•362				6 8		•	٠	٠	٠	• :		100	0,79	<u>•</u> 88	. ,	6).	(j æ
		*				2 (5)		9(4)		•(1)	•	÷	. 235	·			200			174	ë	74	2 (3)		00		60	33	***			85 6	9.0	•			•	•	2	2 000			×	6		100	٠	•		203		٠		\$ (3)		-	32
	• •	•			3	•			·	•	٠	٠	•[]•		٠	•	•			٠	í	٠	•			•		1	÷	•0			•	٠	٠			٠	٠	•		٠	٠				•	٠	٠		•	٠		•		•	٠

Turn over

7	[Ma	ximum	mark:	61

Akar starts a new job in Australia and needs to travel daily from Wollongong to Sydney and back. He travels to work for 28 consecutive days and therefore makes 56 single journeys. Akar makes all journeys by bus.

The probability that he is successful in getting a seat on the bus for any single journey is 0.86.

- (a) Determine the expected number of these 56 journeys for which Akar gets a seat on the bus.
 (b) Find the probability that Akar gets a seat on at least 50 journeys during these 28 days.
 [3] The probability that Akar gets a seat on at most n journeys is at least 0.25.
- (c) Find the smallest possible value of n.

8. [Maximum mark: 7]

The following directed, unweighted, graph shows a simplified road network on an island, connecting five small villages marked A to E.

(a) Construct the adjacency matrix M for this network.

[3]

Beatriz the bus driver starts at village E and drives to seven villages, such that the seventh village is $\boldsymbol{A}.$

- (b) (i) Determine how many possible routes Beatriz could have taken, to travel from E to A.
 - (ii) Describe one possible route taken by Beatriz, by listing the villages visited in order.

[4]

		•	•	٠	٠	٠	•	٠	٠	٠	٠	•	ŝ	• (1	•	૽	•	•	•	•			ŝ	•	•		•			٠	•	3	100	٠	•	•	3		0	٠		•	à		٠			٠	1					٠		ì		•	è		•	•	•	٠	•		
•				٠	•	e.	50	e	80	•		٠	÷	933			83	:	œ	.	•	* 1		ż		2.	,	e de	÷		٠	Į.		100	•	•	10	: 1	515	•			*:	Ť	ž.	•	580	•			tel	,			٠	į, č	,	٠	è	٠	9	•	îŤ	÷	٠	•		
•			884	•			€3	×	×		***	*53		•		654	·	v	0	3 00	* 0	R F	00	•	•	•					1.00		×	X (0)	٠	•	•				•	•	•	÷	(*)()	•0	•	*	٠	196	•559	. ,	63);•	000		•	•	٠	(*		*	93 9	•	(*)	ĵ.		
				•			•	ê	•	•			è	200		e la	T.	ě	e.		•										•	·	S.	.	•	•					•	٠	έď	•	•	•		×	•	¥	100	. ,	U .		•	::0	¥		•	•	×.	26	÷.	×				
*::		,	-	•	٠	i.	•	ð	•	(2)	•	•	c	•		/.	3.5	,	į.	•	•	÷		ě		•		•	•	٠	٠		٠	٠	•	•				•	٠	٠	•	•	•	•			٠		• (٠		•	•	٠	•	٠	•	•	•	٠			
•0	• •	,	083.	•	٠	•	•00	œ	•	٠	•	•	3.	5 2)	9 (9	00	_*	*	•	(5)	•	*	6) (<u>†</u>	•	00	900		•	•		77.	,	28	1 00		•	•00		9.24		((e)	e.	:00		30	•	:03	•	٠	Ť	• 66			3	į	38	•	٠	٠	•	æ	*	e†	*		: *		
¥0,			84	•	•	્ર	÷	ä	•			•		3 9	. 5		884	æ	14	*3	•			,	72	٥.		886	•	0.0	5.0	ě	•	,		•	•	. ,	ं			٠	3 8	•	٠	•	6 9	•		×		, ,	029	(()	OR.	9	×		•		87	×		*		18		
	•	,	710	ř	٠	•	•0	٠	•	٠	•	•	•	•	• •			•	ĺ	• (•	•							÷	2.	٠	i	ě	*		•	•	9			٠	ě	ě		•	•			•	¥				M	v	=;	2						-		The	-		
•)(•0.9		(S.	•	٠	37	•10	×	*0		٠	•		5 13	er:		CS#	83	i e	*0	•	•	101			239					i i i		÷	:85	•	٠			-	, i ė	i e		***	•	٠			2			•			/ 0.5		. 17	7.	٠	÷	÷	÷	8.	Ģ.	·	٠	ě		
*10			ei.	æ		3	¥00	٠	•	30		•		8 00	0)3		•	×	:: +	***	**				0(*	029		•				*		•8			•		63) (*		æ	• 2	•	٠	. 25		٠	•	٠	• (1)			•		554	*		Ç. • 1		÷	•		٠	٠	 		
•	•			•	٠		100	à	•				è		ary			8	ů.			ě.	,		26							i	S.	ě:						n.			•		÷				•	÷	•		83	S .		504	•	•	S:4		98	•	•	×		S.		
*8	• 23		10.7	*	٠	÷	•	*	*		•	•	•	100	9 13		Set	**	1		•				· ·	0,	ł		÷			ě	•	•	٠	٠	•		•		÷	•	•		•	•		•	٠	٠	•()		ř	•	•	(•	•	٠	ě		•	•	•	•	٠			

9. [Maximum mark: 9]

At a running club, Sung-Jin conducts a test to determine if there is any association between an athlete's age and their best time taken to run $100\,\mathrm{m}$. Eight athletes are chosen at random, and their details are shown below.

Athlete	A	В	С	D	Е	F	G	Н
Age (years)	13	17	22	18	19	25	11	36
Time (seconds)	13.4	14.6	13.4	12.9	12.0	11.8	17.0	13.1

Sung-Jin decides to calculate the Spearman's rank correlation coefficient for his set of data.

(a) Complete the table of ranks.

[2]

Athlete	A	В	C	D	Е	F	G	Н
Age rank			3					
Time rank							1	

(b) Calculate the Spearman's rank correlation coefficient, r_s .

[2]

(c) Interpret this value of r_s in the context of the question.

[1]

(d) Suggest a mathematical reason why Sung-Jin may have decided not to use Pearson's product-moment correlation coefficient with his data from the original table.

[1]

- (e) (i) Find the coefficient of determination for the data from the original table.
 - (ii) Interpret this value in the context of the question.

[3]

(This question continues on the following page)

(Question 9 continued)

• •	•	•	•	•						. 19	97							•	•	÷	•	•	1000	•	•	•				81 4		٠	(4)	\$ (3)	. ,			•	S	•	• 77		•	٠	•	٠	•	. ,		٠		•			•	•	•000	•		130	•		
e 10	٠	٠	e i	*	•	•	ini	1	::::					(3)		Ċ		•	ř	٠	٠	٠	91	•	•	•	٠	•/		•	٠	•	•	•			•	•	•	•	•			•	٠	•			9	•					٠	٠	•					•	
	(ic	٠	e::•	*	٠	٠	• (1)		•10	•			• 3	-	639		:::	•	:	٠	٠	•	•	•	•	•	٠	•50		•	÷	٠	•	•00	•		5):	*	•	•	•		121	÷		S.	100			٠	٠	7	10	è	٠	٠	•	,	· 10 •			•	
	•					ě	161			•	•	• 13	•)	33			9,2	2	÷		٠	٠	•6		٠	•	٠	• (S)				٠	•	æ	• 9	(()	0.4	٠		•]	•		- 30	•	•	(1 0)	•00		89	1.0	(6)	٠	•03	*		*	•)(5()	. ,	60	998	*	ř	
	Ċ:	÷			÷					•		• ()	•				•	٠		٠	٠	ě	•		•	٠	•	100			٠		2.5									2 :	٥.		•	•	• 17	¥ s		11	·		63	90		2	\$ (0)			::*:	÷	834	
• •	E	×) (•	e	×	•		• 7.5	•	•	•86	•	68	5.8	•	125	2	٠	٠	×	ċ	:5		٠	(80)	*	tin	1 1		E#			N.				ý	٠		•	1		•	٠	•	•		•	٠		٠	•		٠	٠	•)				•	112	
• •	•3)(%			•		•0	•	•	€ 530		((2)	607		9)	÷	٠			×	83		*	•		•			. (0)	÷	•	×.	•5]		•		•	•	•3		•	•	(•		::	• 1		::	:0			1.3	•	35	.	• 2	• •	68 5	ŧ	:: :	
• •	•	٠	•	1		٠	•	•	•	•	3		i	1/2			VO.	•			ů.	•	2		٠						8	÷	54	¥	•			j.	٠	•					•	•	•			YŒ	•0	•		1) (*)	٠		£3	•);	•((•	659	٠	9	
*:5	to			2	•	÷	•	•	ė.		ň	•		e))(93	,	ij.	7	٠		7	Ţ	ì	٠	÷	700	٠	•			٠	•	•	•	•	6	(è	•	٠		•	• •	•	•	٠	•			•	2	ŭ,			1	8.	•	•16	ă i		•	•	
	*	æ		::	*3	,	• ()	• 0		• 3		•8	910	•00	•	•		٠		(3)	•	÷	•	•/	(*)	•50	•	•	•	999	99	•	889	*(• :		88	÷	٠	î.T.	*17		•			æ	•	•	. (*	•	*	i.	•		:	ņ.	•	,	3 3	9	8	•	
	•	ŧ		•	20	i.	•	•	į.				•9	¥I i	.00			·	•	S & S	ě)	32	•	•	٠	2 00	•	•	•00			¥	S-4	***	•		659	٠		⊙	•		•			33	*	• 13			٠	Œ	•	•		÷	•5	•		E6 t	٠	•	
, is	ē	į		•	•		•	•	÷	•	٠	•	è						٠		•	1	20	٠	٠			•				s	11/4		. (. ,	37.	ı			200	. :					•				÷		. :2			÷	¥S.	•					į

Turn over

[2]

[4]

10. [Maximum mark: 6]

A chocolate company plans to produce chocolate bars with special flavours. They survey 246 people to determine if there is any particular preference for one of the flavours.

The table below shows the information collected.

Hot chilli	Almond crunch	Spiced Chai	Ginger'n'lime
75	59	46	66

A χ^2 goodness of fit test at the 5% significance level is carried out on the data.

State the null and alternative hypotheses for this test.

The critical value for the test is 7.82.

(b)		F	⊃e	er	fc	r	m	۱ ٔ	tr	16) -	te	98	st	а	n	d	ç	ji\ 	/6)	yc) _	ır	C	0	n	cl	u	si —	01	n	ir	ı (0	nf	te —	xt																			_			_
			¥n	•		• 33	. ,	e (7)	. (2)		•(1)		•	•		- SS-1		•	•	500		•				•	•	•	•		()*	1	٠	ŭ.		•	•		883	907	•119		50 4	•(C)				0.3	•	• 1		•	• 1	Saħ	200		•	ě	*	•
0.50		٠	×		•	•		•	•37							100	÷	٠	1	•		•0	•		C.	٠	•	e	5	٠,		*	E	ů.		ė	•	•) (•	٠	•	9	ě	•17		40	(G)		•	•3		200	٠	•	16	• •	0.0	-05	2	•
) K - *) (*	•)*)	٠	•	÷	•	•	•	•	÷	•	•/	,	ę)	•	•	•		٠	9		•	p 3		P .				* (E)		£0.		*0	٠	• () •	7.0	•		838	S*	•					•	•		٠	270	•		÷		÷	•		(S) 4	٠	25
a 236	o.		12	×	•	•	•	÷	•00	×	***	*	•	•3		• 25	::::	•	्रह	*	٠	٠	•) •		•	•				8		::::	:	\$ (5)		000	75	36			•	•000	•	*3		82.	•		٠	ě	•	٠	•	•		•	
		•		•		•				•			Q.	•	•	•(•				(*)	×	•	• 9	•82	::		:::		.			ŝ	٠		•	ě			<u>.</u>	£ ?	-		÷	2 03	·	•		e ()	:0	•	•	8 5	•	3.5	•68	: :		٠	
			•			e e	200	•	ě	٠	٠	• ()	ě	•	•	ě	Ve.			•	÷	Si.	•	•50				٠.	•	•		• •	*	•	*	10.	*	*0			•	· ñ		(•	•?				-	٠			a.		G1.0	•		•	:)•	
40 SE +	0.09				•	æ	•	•		•	ě	×:	•	٠	·			į	٠	÷	•	0		•		\\:			٠				· .				*	(*)		e•	٠	•		ű:	•	•	10			Ĉ.	• (•	8		93				
					2		.	•	•	¥33	•	•	٠		•):		8 1.9				.8	e e	•	€3		*: I			•	• (1	ä		Œ.	.				.		٠	٠		10	. 9	e(()•	•	•					•	•			
ke i		9.2	ě				٠	•	•	•	4				¥20	3	•			©. •	×	•	٠	•00		•:	•)]•			10		*) !s	10.5	**			٠	•				•			•		*	•		•	×	•()(•	ě			96	•		0	•
****	•			99		٠		•	a•	*			ij	٠	•	٠	•	•					•		•	•	· (1)		:::•	XI	•)	٠	•) (•		•		::e	•	***	: 1	::: <u>*</u>	*.:			7		٠	•			•		į.		133	S.	•(5)	. ,	• 23	•
	•			-		•		£	10	(*)		œ.	ė	Ç(±	٠			•00			٠	1	Ť	÷	٠	٠	•		•	٠	•			2	•		23	•	*55		::÷	•(1)	• •		33.	*::	1)•	•	. ;	9	٠		9	٠	•	•	•			

11. [Maximum mark: 6]

Two AC (alternating current) electrical sources of equal frequencies are combined.

The voltage of the first source is modelled by the equation $V = 30 \sin(t + 60^\circ)$.

The voltage of the second source is modelled by the equation $V = 60 \sin(t + 10^{\circ})$.

(a) Determine the maximum voltage of the combined sources.

[2]

(b) Using your graphic display calculator, find a suitable equation for the combined voltages, giving your answer in the form $V = V_0 \sin(at+b)$, where a, b and V_0 are constants, a>0 and $0^{\circ} \le b < 180^{\circ}$.

[4]

•	•	•	•	•	•	•	D*0	•	•	•			•	•	, 14								٠.	(C.4)	•	•	•		•	*)	•		•					•		•	•:::				200	•	• •			***	•			***	•			•
	9		٠	273	4		٠	·		2/3		٠	٥	18/1		1	4	¥ is	. :		12	•	1			100	÷	88	•	•	÷				÷	102	•			84	12		165	÷ :	33		•		<u>.</u>	***	•	1	5 4			· 17•	14	£Ĉ.
tri	2 2	• •	S.5.	10			٠	E C		573			.6			() e		•		٠		100			٠	٠	ě	Ņ,	ě	٠	÷	5.0	ž		ĵ,	9)(*	ř	•	į.	•	•		٠	•	•	•	•		()•	٠				9			٠	•
																																																			• •							
•	•	• •	•	•	•	•	1.5	•	٠	•	•	•	٠	•			٠	• ()		٠	•	•((•	ં		•	•	*	٠	٠	• (٠		•	•	•		٠				•		•	•		N/4			2	7/4	23			32	÷
**	2.1	•	: Y*	90		•	25 . 5	•		****	915	ŀ		K) S	:::		3(*)	*89			×	:8			a:	r.	ð.	•	*	٠	*	•			æ	:01	*	•	* :		•	•31				. • :	.		et	•	• ::	1 1		•=		: 15	ं	*:
æ	•			•60	(# -)	.	.:*	* 33	٠	• •			×	¥50	£):9	6(4)	88	€ (2)			318	(()				63					٠	8 00 e		0.00			•	***		60%	*(:		*			٠	• 1	. ,	00	((1)	•	6 ×	O.	•0	• •			ĸ

Turn over

12.	[Maximum	mark:	51
-----	----------	-------	----

A spherical balloon is being inflated such that its volume is increasing at a rate of $15\,\mathrm{cm^3\,s^{-1}}$.

- (a) Find the radius of the balloon when its volume is $288 \pi \, \mathrm{cm}^3$. [2]
- (b) Hence or otherwise, find the rate of change of the radius at this instant. [3]

٠.																																							27712			200	2				3 0				Chr. Co				
•						•	×		٠	(60)		ja.	*)	96.9		() i	((1)		×	i.	œm	0(4)	*)0				•					 3	•		8	a 5		ą.	:::	•		•		·		1172				į,				2	
•	•				•		V			•		100	٠	•		16	•				•	٠	•	٠	• •	•		•	•	•		٠	• (•	٠	•			•	•	•	• •	•		٠				9) 9		್	•	.*		•	1 8
5			,													2.0	• • •													•				0.00	***		0.000			***		6200			٠		900			and the	ema	120			2
9	×	(*)	٠		٠	٠	٠	• 6	*:	•		(i) y	•	•		((•	•[[•	•	3	•		•		• : [•	•	٠			•		:Œ	• .		3 (3)		200	×		•	65.04	20	2 23	4	* 1	es.	900	4 5					•		
•	•	•		•97•	•		•	•	•		•	10+	•	•		100					100	•		•		•	•			•	•	•				•		٠	•	•	•	•	•	•	•		•	•		•	tot	*			0)
•		٠	•	•	٠	•			•	•						50	•					٠	÷	,	0.00		•			•	. ,	11.	20.2	0.5	100	. :			:::	*:5	1125	1953			•::•	- Sign	*277		63.00	3.5	•000	**			<u>*</u>);
÷	7	٠	(*)	ts:	*	٠	7		*	200	9	:*	•	• •		93	ř				•03	•	903	*	(11)	×	()	* *	€. •	•	• •	9	•		•00			•	2.	18		•	*	•	•	· ·	•29			•	•	•			40
		•							v								200				200				002		20			430		 Si.			50		200	200		100	- 25		3 20	12	2574	ma	¥100	a s	(Year)		1531	20	neni		9
	¥	٠			•	•	•	•	•				•		•	٠	•		٠	٠	•) •		•		•	٠	•		1	•		٠		٠	Š	8 8	•	•			7	• 0	,	:		9.0	100		:5	٠		8	91.		<u> </u>
																																															•00								
	Ť	•	•	•	•	.5)	•		*	•		್			۰	*		1 2	۰	*	188	*			83	8	9 1		S105	80	• •		•	•	•	* *	•	• (•			6 10		• •	1000	•(0)	* *		•	•		•	•	Đ.
					-			2002	200				200			-0.00					5.000																																		

24EP16

13. [Maximum mark: 7]

The matrices $P = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$ and $Q = \begin{pmatrix} -4 & 1 \\ 1 & 3 \end{pmatrix}$ represent two transformations.

A triangle T is transformed by P, and this image is then transformed by Q to form a new triangle, T'.

(a) Find the single matrix that represents the transformation $T' \to T$, which will undo the transformation described above.

[4]

The area of T' is $273 \,\mathrm{cm}^2$.

(b) Using your answer to part (a), or otherwise, determine the area of T.

[3]

Turn over

[3]

1	5.	[Maximum mark:	61
	v.	HVIANIHUHH HIAIN.	UI.

A random sample of eight packets of Apollo coffee granules are selected from a supermarket shelf.

The weights of the coffee granules present in each packet are as follows:

222 g 226 g 221 g 228 g 227 g 225 g 222 g 223 g

- (a) (i) Find an unbiased estimate for the mean weight of coffee granules in a packet of Apollo coffee.
 - (ii) Calculate a $95\,\%$ confidence interval for the population mean. Give your answer to four significant figures.

(b) State one assumption you have made in order for your interval to be valid. [1]

(c) The label of each packet has a description which includes the phrase: "contains 226g of coffee granules".

Using your answer to part (a)(ii), briefly comment on the claim on the label. [2]

																																	200	500	3003	-	200		200-	SCIE.	500	(0)	35.0	100	0.00	Ø10	200	-	:00	800	-	ne c	
*	nie.		٠	S*E	53		•	• 60	875	:001		(*)	5	673	3.0	•(3)			•				•	•)	•/;		33 4	* 19	•	•32	 • •	٠	• •	*		•			•		•(0)		e:#(c	*	e o	•	•)	(6	:	• 003	٠	/•	
	• 66	٠	7.0	•		*	٠		0.00	•	æ	(* ()		e:::#	٠	(45)	€ €	·	***			×		(4)	•		:: ::	1 000	860	a .00	 	¥		***					•				747			Ŷ,		٧.	1	• 11.	•	•	ř
¥			-	٠	63		ī.						2				•	•	•		•	è			•		•		٠	•		٠	• •	•		٠	,	į.	÷		26	ě	•			•				,test	*		•
																																													•								٠
95	8 9 e		•	٠	•		() t	•	() *	1000	*), # //;	* •	E94	80	• 0	((*)	ė.	•30		٠	٠	•0)•	٠	• ()		::	699	,		 <u> </u>	*((• •	* (3)		() * ()		823	•	10.0	1000		oi i			200			(a)	-00	*		÷
•			•		• •		84		7.	\$100 8	×		٠.	£%.	¥.						•	•		•	• 6	i i						¥,		210		٠			•	•		٠	•		•	•))		٠		•10•	•	٠	ě
•		•	Ţ.	•			9				•	٠		•	•	•	•	ě	•)•		•			•	•		٠		ŝ	٠	 e.	•		•				Sat	*10	9.0			S-7	•	·	***		٠	:*:	:::::	9	:53	×
•0	• •	•	815	*:			S.	•	3•	50	2	٠	*1	es.	es			in.	: 65	×		٠	•	٠	•	559	×	•000	*		 (::: :	•	• • •	•		0 * 0		5.0 9	e i		•		206	• :	e:3.e	•00		•			٠	F. 1	×
•0	• •		()(*	*0	• •	٠	()		٠		ĸ		• (•	ca.	•				(1)	*	/ *	٠	€84	XS	. :			1000	91	•	83	.)?		¥83		•		e.			16:24	¥	14		2				100		2		
\$33			884	•			8		•			•	ŝ	112	20							•		33	. ,			. ,		٠		•		•		٠		÷	•	٠	• •	ē	Ť	•		500			•	• •	*		÷

Turn over

[3]

15.	[Maximum	mark.	61
ıv.	IIVIAAIIIIUIII	IIIain.	O1

A random sample of eight packets of Apollo coffee granules are selected from a supermarket shelf.

The weights of the coffee granules present in each packet are as follows:

222 g 226 g 221 g 228 g 227 g 225 g 222g223 g

- (a) Find an unbiased estimate for the mean weight of coffee granules in a packet of Apollo coffee.
 - Calculate a $95\,\%$ confidence interval for the population mean. Give your answer (ii) to four significant figures.

(b) State one assumption you have made in order for your interval to be valid. [1]

The label of each packet has a description which includes the phrase: "contains $226\,\mathrm{g}$ (c) of coffee granules".

Using your answer to part (a)(ii), briefly comment on the claim on the label. [2]

																																																			0.0	
ř		•	•	 *	•			18	81	* 88		(1)	100		310	* 9	98	89	5 /2	95.50	*	:::	(*)	*	0/28	***	•)	6.6	•		٠	• ()		9 9	•	0.	• () (•	•	• •	•)3		•	•	• •	• 9	•	•	**	•	*	0.0	٠
																																																		ä		Œ.
0.0																																								·									5005			•
0.00																																																/⊛				
																																																		×	241	×
																																																٠		()	٠	٠
																																																			·	
•																																																				
•																															-							•												-	514	¥
•	2	SUL	÷	•	• :	2	8		٠		 5 4			٠	٠		٠	ě		•		•	•		٠	• (•	•	• (•	9	•	٠	•	٠	•		•30	ŕ	•	į	•		V	ń	5 6	e.	*		t		÷

16. [Maximum mark: 9]

The following diagram shows parts of the curves of $y = \cos x$ and $y = \frac{\sqrt{x}}{2}$.

P is the point of intersection of the two curves.

(a) Use your graphic display calculator to find the coordinates of P. [2]

The shaded region is rotated 360° about the *y*-axis to form a volume of revolution V.

(b) Express V as the sum of two definite integrals. [5]

(c) Hence find the value of V. [2]

	200	 	2			1100			-		72	275	200			20			572	2015	. 2			1001				202	400		- 10							 70	27.2	127			0112	401		200			4				
						•					_	•				-	_		_				•		-				-							-		-								•							
	•		•	٠	٠	• 7			٠		•	•	•		•	•			٠	•)		٠	•		٠	•		٠	•		•	٠	•	•		٠	٠	•	• •	•	•	•	٠	•17	•	• (0)			•	• .	•	٠	
*53		150	*	٠	٠	•//	. ,		٠	•	÷	*	•0	• (1)	::	•			•	.		٠	*	166	*	•	e 19	•	***	•	•	•		٠		*	•	 et.		*	•			•		* 33		\$3 . **	*	•		(3)	
900	•	 		٠	٠	e:						•::	•):		::*	8 3		•		•			٠	•13		(*)		8.	*0					*		×	•		ю		•:		0)(*	*	•	•(1)			•	• : •	٠		
365			•		•				٠		S.		£13	. 1		<u>.</u>	2 0			•		•	្		÷	4			10		5	÷		٠					100	4	•		÷	\$ 3	2	¥	ı		41	F	÷	a.	
	25		į		٠	6			·	٠	ř	•	•		•		. ,		8	100	ě	٠	Ŷ	,	ì			•	57		į	•	į.	·	ě,	ř	•	•		•	٠		ō.	•		*00		٠	•	•	ě	٠	
*50	100	539		٠	٠	£9		0.3	•			•	• ;		•	•	, ,		70 °	* 000	*		*	::::	*	9)(S.#	×	•)!•			•	•	•	×	• /		• ::	*	• 6		80.	****	(G#	· so	· ×	9000	•	•	×	•	
*100		 - 7	×	40	•	23		63	٠		Se.	:	• 5	•	:2 :	40	. ,		24	\$ (8)		•	·	100	÷	·	٠.	S\$4	ķ.	•		•	٠.			20		 , i	100	ů,	•		() à	¥8737		\$ 30		6.00		R OR	*	•	
• 2				•	٠	•		• •	•	٠	•	•		• •	٠	•))	ŧ i	. 10		1	•	٠	•	• (•		•	. ,	•	•	• •	•	•	ŀ	٠		•	•	 ٠	• •	•	•		()*	•		•17		٠	•	• •	¥	×	
<u>*</u> ::•	•		*	٠	*	•		86 3	٠	٠	٠	. ::			S.\$	•			8.5	.	•	٠	a t i	122	*	•	• 11:		800	•	•		2:ª	٠	•		•	S.	****	Ť	•		35	*:5	538	•88		(3 .5)	٠	***	5	4	
¥(0)			×	÷	٠	•3			٠	٠	9	ĸ:			•	•		•	9.	•00			٠	0	ě	Sir s	• 1);ia	**	(a));	(0)	a ·		٠	629	*	•	 28	* 50*	*	•		0.	****	•	•00		(4)	•	•	*	•	

Consider the differential equation

$$(x^2+1)\frac{dy}{dx} = \frac{x}{2y-2}$$
, for $x \ge 0$, $y \ge 1$,

where y = 1 when x = 0.

- (a) Explain why Euler's method cannot be used to find an approximate value for y when x=0.1. [1]
- (b) By solving the differential equation, show that $y = 1 + \sqrt{\frac{\ln(x^2 + 1)}{2}}$. [4]
- (c) Hence deduce the value of y when x = 0.1. [1]

500	7 7		0.70	7:10		9370		2005	800	7 .5	1053	2	7000			170	2105		2,500		005	20		5005	OT:	100	7 3		2171	7700				100	**	•			810		100		005	503	5/3/5:	711			(8.7)							
*(1)	9 9		(1)	€(0)		•			***		8040		1 03	1	/#	•	• •	*:	•)		· ·)(S	•		-	€)Š			(4)	• (3)		((*)	•	•	×	3 0)		×	1 0.5					¥03	(\/*	ŧ3		٠.	10	* (*)		ं	•(3)	• :	÷9	
2)		•	į.	103		٠			277						•	•		1	•			8	•		٠	200	•		٠	•00			•	•	•	•		•	1		٠		1	•) (·		i.	• •	•	•	1	•	•	• •	10	
•		•	•	ter			•	238	e.			· ·	ter		15.	.5	143	ē.	•	•		te	•		8.2	•		9.5	ort.	.			•	161	:	200	s is	•	100		(* 03				/st	ŧ		10.5	٠	20			•		t ti	
•	, ,		(1)	•:::		(*)	•	e s	*8	. ,	E (1)		•		. •	*	•::•	*	(4)		ež:	ĸ		e (e	es:	*			æ	e			٠	•)::•	83	•))		-69	:8		(*)		()	•63		* 01		• (•	•	63		639	(*)		s *:	
\$ 3				i (1)		•	٠		6 55			×	£004	. 0					•		8%	ĸ.			8(2)	* S	2 3		84	8 23		•	•	194	×	•		×2	¥6		•	2 2	£.;	*3		į (t)				13	. ,	65	**		2 27	
•		٠	•	•))		٠	•	•	•		•	٠	• •		٠	ě		•	•		•	•		•	٠	•		٠		•00		٠	٠	• •	•	•		٠	•		٠		()	•		•	•		•	e (•	•(• •	•	
ŧä			াশ	• 68		۰		:::	.			œ.	*83		٠		:23	*	•))	5 1	535	22	•		S18	:0			e.	5 8	, ,			•66 •	*	•0	S IP	33	:00	1.5	9 . ***	: :	85	•		10	•	•	2.5	53			•0	*::	5 80	
*()		•	•	• 555		(•)	• (. Si		0.0	9	833		•	٠	•) : •	96	(•))		8	*	•	• •	019	***	* 9		((*	•			æ		×	(4) (e De	÷)		(*)				G.	•))	٠	٠.	() .	63		ं	(4))	*) 1	* *:	
•				3 0		•			•			•	(2)		•	•		ş	41						: :					¥2)			•	100	ě				277		i.		(1)(2			i i						-	÷1			
•0	ē	٠	•	•	•	٠	•	•	•	;	00	•	•	Š	٠	ě			•		3	•	•		33	9:			Ů.	:00		(,•)	٠	1.5	ė	•	9.6	ě	•		٠		.)*	•	157	9.	¢	. ,	٠				•	•	5	
200				#700																						2000				2000						Sec. 10			***							40.00				600						

Please do not write on this page.

Answers written on this page will not be marked.

24FP22

Please do not write on this page.

Answers written on this page will not be marked.

24EP24