

Chemistry Standard level Paper 2

12 May 2023

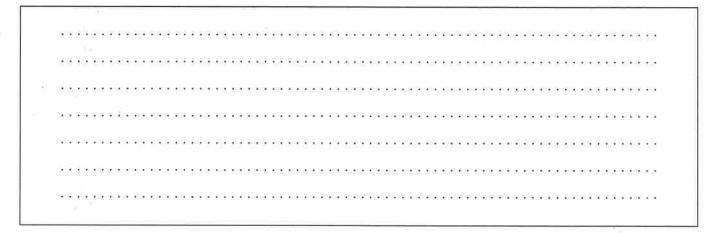
Zone A afternoon | Zone B morning | Zone C afternoon

Ca	ndida	ate s	essi	on n	umb	er	

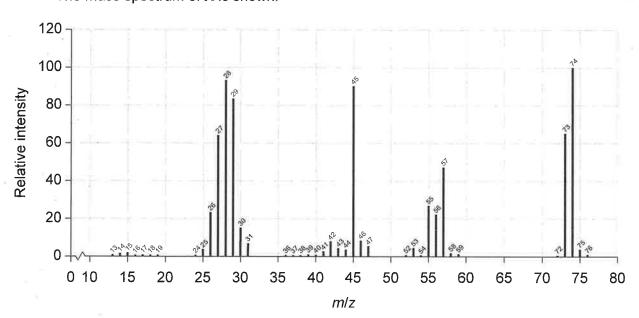
1 hour 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the chemistry data booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].



Answer all questions. Answers must be written within the answer boxes provided.


- 1. Analytical and spectroscopic techniques enable chemists to identify and determine structures of compounds.
 - (a) An unknown organic compound, **X**, comprising of only carbon, hydrogen and oxygen was found to contain 48.6% of carbon and 43.2% of oxygen.

Determine	the	empirical	formula
Determine	uie	empincai	Torriula.

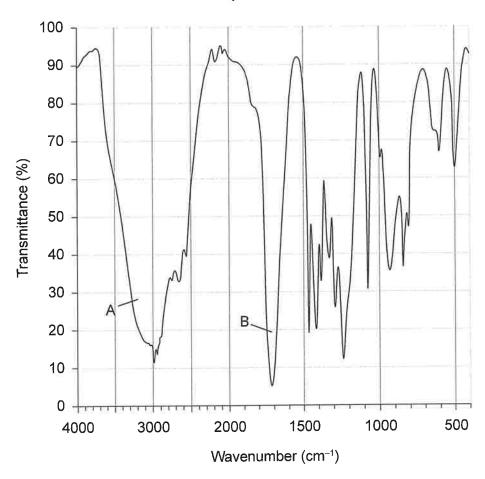
[3]

The mass spectrum of **X** is shown.

(b) Identify fragments responsible for the peaks at *m/z* 74 and 45 using section 28 of the data booklet.

[2]

<i>m/z</i> 7 4 :	3 100 x 1	F 100 100	* ***	60 KG	 100 to 100 to	700 4000 9	 e 2006 90	100 to 10	 \$ 255 B	 4 4 17		 384 S
<i>m/</i> z 45:				120 23	 24 27	12 174 C	 0.00		 	 	10	



(Question 1 continued)

(c)	Determine the molecular formula of X .	[1]
* 6.7		

The infrared spectrum of \boldsymbol{X} is shown.

Infrared spectrum of X

(d)	Identify the bonds making the major contribution to peaks A and B using section 26 of	
` '	the data booklet.	[2]

A:	-		
B:		KA 634 K 614 40408 EU 809 819 11 1.7	

- 2. Nitrogen (IV) oxide, NO₂, is a brown gas found in photochemical smog and has a pollutant causing acid deposition.
 - (a) Nitrogen (IV) oxide exists in equilibrium with dinitrogen tetroxide, $N_2O_4(g)$, which is colourless.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

(i) At $100\,^{\circ}$ C K_c for this reaction is 0.0665. Outline what this indicates about the extent of this reaction.

[1]

1913 1938 191810 1938 191810a	THE PERSON AND AND ADDRESS OF THE PERSON AND ADDRESS OF THE	
SECR. 650 45000 KS4 45000V		
	CO EXPOSE DO FINA DE DE CADA DE REAL PARA DE LA RESENTA	

(ii) Calculate the value of K_c at 100 °C for the equilibrium:

[1]

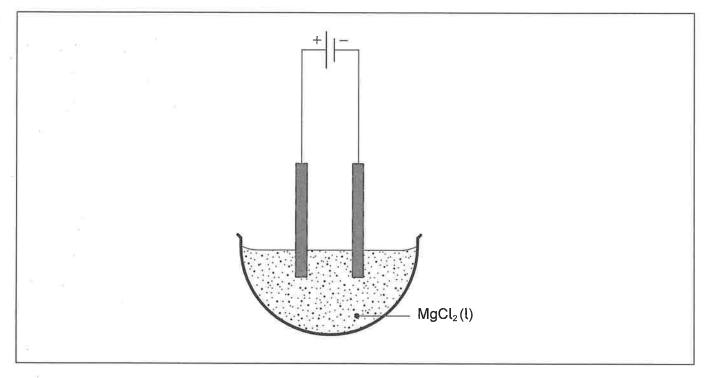
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

(iii) Calculate the standard enthalpy change, in kJ mol⁻¹, for the reaction:

[1]

$${\rm N_2O_4(g)} \rightarrow 2{\rm NO_2(g)}$$

	ΔH_{f}^{Θ} (kJ mol ⁻¹)
NO ₂	33.18
N ₂ O ₄	9.16



(b)	Deduce the Lewis structure of N ₂ O ₄ .	[1]
(c)	The NO bond lengths in N_2O_4 are all 1.19×10^{-10} m.	
	(i) Suggest what the bond lengths indicate about the structure of N ₂ O ₄ .	[1]
10.00		
107 E		
	(ii) Predict the ONN bond angle in N ₂ O ₄ .	[1]
20 *00		
84 ¥3		
(d)	Acid deposition is formed when nitrogen oxides dissolve in water. Write an equation for nitrogen (IV) oxide reacting with water to produce two acids.	[1]
#23#23#3		
\$77\$(1\$)		

- 3. Electrolysis and Winkler titrations are both applications of redox reactions.
 - (a) An electrolytic cell was set up using inert electrodes and molten magnesium chloride, MgCl₂(l).

, (i)	Identify the product formed at the cathode.	[1]
 	file for the first term to the tree to	
3 10 100 100 5 10		
(ii)	Annotate the diagram to show the movement of electrons.	[1]
(iii)	Graphite rods are sometimes used as inert electrodes. Describe the structure of graphite and explain why graphite conducts electricity.	[2]
V ROBER AND ROBER	HE ROOM HE HOME TO BE MINE HE HOME TO HOME TO BE ALL OUT IN THE WAY TO WAY IN THE WAY THE WAY TO SEE	
		to
1003 13 4.00	THE STATE OF STATES AND THE PROPERTY OF STATES AND ADDRESS OF ADDR	
**** *** ***		
27.4 24 27.1		

(Question 3 continued)

(b) Winkler titrations can be used to determine the biochemical oxygen demand, BOD, of a water sample. One set of equations for the reactions occurring is:

$$\begin{split} 2\text{Mn}^{2^{+}}(\text{aq}) + \text{O}_{2}(\text{aq}) + 4\text{OH}^{-} &\to 2\text{MnO(OH)}_{2}(\text{s}) \\ \text{MnO(OH)}_{2}(\text{s}) + 2\text{I}^{-}(\text{aq}) + 4\text{H}^{+} &\to \text{Mn}^{2^{+}}(\text{aq}) + \text{I}_{2}(\text{aq}) + 3\text{H}_{2}\text{O} \\ & \text{I}^{-}(\text{aq}) + \text{I}_{2}(\text{aq}) \to \text{I}_{3}^{-}(\text{aq}) \\ 2\text{S}_{2}\text{O}_{3}^{2^{-}}(\text{aq}) + \text{I}_{3}^{-}(\text{aq}) \to \text{S}_{4}\text{O}_{6}^{2^{-}}(\text{aq}) + 3\text{I}^{-}(\text{aq}) \end{split}$$

 $150\,\mathrm{cm^3}$ of a water sample was tested using a Winkler titration. $36.0\,\mathrm{cm^3}$ of $0.00500\,\mathrm{mol}\;\mathrm{dm^{-3}}$ sodium thiosulfate solution, $\mathrm{Na_2S_2O_3}(\mathrm{aq})$, was required to reach the end point.

	(i) Determine the concentration, in mol dm °, of oxygen dissolved in the water sample.	[၁]

	(ii) Outline how the BOD of the water sample could be determined.	[2]
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	(iii) Suggest what a low BOD value indicates about a water sample.	[1]
	4 44 44 444 44 444 444 44 444 44 444 4	
a		
	* ** ** *** *** ** *** ** *** ** *** ** *** **	

4.	The periodic table provides information about electron configuration, and physical and chemical properties of elements.													
	(a)	Bismuth has atomic number 83. Deduce two pieces of information about the electron configuration of bismuth from its position on the periodic table.	[2]											
	1 64													
# FE	9.99	tida talka na talka na na raka na kisa na kasa na na naka na nakasa na maa na maa na maa na maa na m												
	* ****													
2	(b)	Outline why aluminium is malleable.	[1]											
		ENGLES ENGLES OF ELECTION OF EACH OF SOME OF COMMON OF THE BOTH OF THE SOME OF THE AND												
	\$1.000 (
-	(c)	An 11.98 g block of pure aluminium was heated. Calculate the heat energy absorbed, in J, to increase its temperature from 18.0 $^{\circ}$ C to 40.0 $^{\circ}$ C. The specific heat capacity of aluminium is 0.902 J g ⁻¹ K ⁻¹ .	[1]											
	1077 (AT)													
	20102													
	No.													

[2]

(Question 4 continued)

(d)	Argon has three naturally	occurring iso	topes, ³⁶ Ar	, ³⁸ Ar and ⁴⁰ A
u	Algoritias tilico flataran	, cocarring ico	topoo, ra	, , , , , , , , ,

(i)	Identify the technique used to determine the relative proportions of the isotopes of argon.	[1]
	EL SER SER SER SER SERVICE DE RESERVE DE DEPENDENT DE PROPOSITION DE PERSON DE PERSON DE PERSON DE	
a to to have	THE RESERVE THE ROLL TO SELECT AND	
Tho	isotopic composition of a sample of argon is 0.34 % of ³⁶ Ar .0.06 % of ³⁸ Ar and	

The isotopic composition of a sample of argon is $0.34\,\%$ of 36 Ar, $0.06\,\%$ of 38 Ar and $99.6\,\%$ of 40 Ar.

(ii)	Calculate the relative atomic mass of this sample, giving your answer to two decimal places.

(e)	State the full electron configuration of the cobalt (II) ion, Co ²⁺ ,	[1]
0400 0 0000		

J.	Wethanoic acid is a monoprotic weak acid.													
	(a)	The concentration of methanoic acid was found by titration with a 0.200 mol dm ⁻³ standard solution of sodium hydroxide, NaOH (aq), using an indicator to determine the end point.												
		Calculate the pH of the sodium hydroxide solution.	[2]											
		FREEE DE LOG DE PORTE LE COLE CE COL CE DE LOS CE LES COLES COLES COLES COLES COLES COLES COLES COLES COLES CO												
	3 2 15													
	9 10 63													
		TO 1993 IN 1993 IN TO SEE SEE SEE SEE THE THE THE SEE SHEET OF SHE												
	at 2020													
	(b)	Write an equation for the reaction of methanoic acid with sodium hydroxide.	[1]											
	or 1000	era da kur da dun da da kur da bur da kur da da kur da dun da kur da kur da kur da kur da kur da kur ja kur ja												
	* ***													
	(c)	22.5 cm³ of NaOH (aq) neutralized 25.0 cm³ of methanoic acid. Determine the concentration of the methanoic acid.	[1]											
	2 502 5													
	0 (3) (
	1079092 4													
	• • • •	E NOT TO TOO TO TOO TO THE												

6.	Bron	nine, $\mathrm{Br}_2(l)$, and methanoic acid, HCOOH(aq), react in the presence of sulfuric acid.	
		$Br_2(l) + HCOOH(aq) \rightarrow 2HBr(aq) + CO_2(g)$	
	(a)	Suggest an experimental method that could be used to determine the rate of reaction.	[2]
	5 400 1 5 400 1 6 400 1		
	(b)	The sulfuric acid is a catalyst in this reaction. Explain how a catalyst increases the reaction rate.	[2]
	(c)	Methanoic acid can react with ethanol to produce an ester. Draw the full structural formula of the organic product and state its name.	[2]
	Stru	uctural formula:	

(Questior	6 con	tinued)
-----------	-------	---------

(a)		(I) —			VIII	C	ure	-	qu	aı	OI	1 10	or 	tn	е (<u></u>	m	pie	ete	e c	01	mr	ous —	STIC	on —	0	1 6	etn	an	101	2												[1]
****	102	••	(f. £2)	• •:	• •	E37	• •	• •	0.E +	se e	0.0	:					690	• ⊘•/	(¥)	638	жā	•	200 F		× 14					120			× .	884			887		· .	en.			
0903	# 553 #	* *	6C - 62	2 20			834		11 F	F4 3		¥ ¥3	3 %		2 26		314		• •		•	•		• (•	• •	•		• •	• •		Ç.	• •			•	ě.	Ţ.			<u> </u>	• •		
		(ii))																		те	C	om	ıbι	ısı	tio	n	of	etl	ha	nc	ol,	in	kJ	'n	าด	j ^{−1}	,					[3]
			*****					****											200			0170		-0.0			r012	CNOR	340.00			cuc	e e e e e e e e e e e e e e e e e e e		SOUTH	74000	20-6				***		
					1 30	50.000	2002	522				-142-0										****			•		••		•				•		•			•					
98 80	•:•	•000	•7/•	× +00				9000A	***	9.1	054)		2 2	14 14			-		****	84	10000					•			•		. (•	•	• •		• () •	• (•	•	•		•	•		
1 67		2072			: ::	•	• •	•) •	• (•	•	ŀ	• (•)	3 8		٠		٠	•	• •	Ċ.		50.7	* *	: : *	1.01			***	•::•	· •	579	5.55	• •	e.•	::::	***	::•	::::·		(O.S.)	60 %)		
÷	5.3	5/85°		1.00	. 183	*	535	rat	*::		3 5 3	1000	* *	er e	90 9 00	el e	08	•	•		e e	920	***	63	139		c: x	•		·	-34	i Seria	**	(9)	e)79 4	• •	(T)	:C3	* 00*	109	• • •		
0 6 (#50)	¥0,0 4 0	•23•	(:•)	000	* *0	*	•::•	•	•	9 . .	39-3	• /• :	* 6		•	• •		0.72	836	- 36	6 [4]	8 93 4				¥11	89		\$ %		22			1/4	100	•	٠	2/4		•	• •		
9 kg	63%	1502			200	•				Φ.	912 7			• •	•	• •	٠	• (•	•	•	• •	•	•0•	·	•) •	* 0	ं	D) (T	•		2.5	tant.		Ç.		*::=	:5	ner	•	69 5 1			
• • •			• •	• (•	• • •	ř.	• •	10.5			195 1	1		* *		• •	23 9	168 1	<u> 1861</u>	•	50a	:00	*	75 5	•000	*2	938	•2:3		(*)	939	roe	*.(*		659	*00	00		***	008	e ::+		
			(ii)	(ii)		(ii) Dete usin	(ii) Determusing	(ii) Determing using se	(ii) Determine using section	(ii) Determine the using section	(ii) Determine the e using section 11	(ii) Determine the ent using section 11 o	(ii) Determine the enthatusing section 11 of t	(ii) Determine the enthalp using section 11 of the	(ii) Determine the enthalpy using section 11 of the d	(ii) Determine the enthalpy ch using section 11 of the dat	(ii) Determine the enthalpy char using section 11 of the data	(ii) Determine the enthalpy changusing section 11 of the data bo	(ii) Determine the enthalpy change using section 11 of the data bool	(ii) Determine the enthalpy change for using section 11 of the data bookle	(ii) Determine the enthalpy change for the using section 11 of the data booklet.	(ii) Determine the enthalpy change for the using section 11 of the data booklet.	(ii) Determine the enthalpy change for the cousing section 11 of the data booklet.	(ii) Determine the enthalpy change for the comusing section 11 of the data booklet.	(ii) Determine the enthalpy change for the combuusing section 11 of the data booklet.	(ii) Determine the enthalpy change for the combust using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustio using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of eth using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of etha using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethand using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ n using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mo using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mol ⁻¹ using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mol ⁻¹ , using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mol ⁻¹ , using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mol ⁻¹ , using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mol ⁻¹ , using section 11 of the data booklet.	(ii) Determine the enthalpy change for the combustion of ethanol, in kJ mol ⁻¹ , using section 11 of the data booklet.

16EP12

(Question 6 continued)

(e)	Bromine also reacts with but-2-ene.													
	(i)	Identify the type of reaction.	[1]											
14: 40514														
<u> </u>														
	(ii)	Predict the structural formula of the reaction product.	[1]											

(iii)	Draw the structure of a section of a polymer formed from three monomers of but-2-ene.	[1

Disclaimer:

Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB.

References:

- 1.(a)(ii) National Institute of Standards and Technology, US Department of Commerce, 2014. NIST Chemistry WebBook, SRD 69. [online] Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C79094&Mask=200#Mass-Spec">https://webbook.nist.gov/cgi/cbook.cgi?ID=C79094&Mask=200#Mass-Spec">https://webbook.nist.gov/cgi/cbook.cgi?ID=C79094&Mask=200#Mass-Spec [Accessed 29 April 2021].
- 1.(a)(iv) Chemical Book, 2017. Propionic acid(79-09-4) IR1. [online] Available at: https://www.chemicalbook.com/SpectrumEN_79-09-4_IR1.htm [Accessed 30 April 2021].
- NC State University, Department of Chemistry, Lecture Demonstrations, n.d. Equilibrium. [pdf] Available at: 2.(a)(i) https://projects.ncsu.edu/project/chemistrydemos/Equilibrium/NO2.pdf [Accessed 30 April 2021].

Please do not write on this page.

Answers written on this page will not be marked.

Please do not write on this page.

Answers written on this page will not be marked.

16EP16