

Chemistry Standard level Paper 2

3 November 2023

Zone A morning | Zone B morning | Zone C morning

Can	aldate	session	numbe	1

1 hour 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · Answer all questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the chemistry data booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

8823-6117 © International Baccalaureate Organization 2023

Ans	wer al l	questions. Answers must be written within the answer boxes provided.	
1.	Meth	anoic acid (HCOOH) is the first member of the homologous series of carboxylic acids.	
	(a)	Outline what is meant by the term "homologous series".	[1]
	10 TO 100		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	55/65 523		
	(b)	Draw the Lewis (electron dot) structure of methanoic acid.	[1]
	(c)	Calculate the percentage, by mass, of oxygen in methanoic acid.	[2]
	1 500		
	9 1811		

(Question 1 continued)

	(d)		nanoic acid and ethanal ($\mathrm{CH_3CHO}$) both contain a carbonyl group and have similar masses.	
		(i)	Explain why, in terms of the strongest intermolecular forces between the molecules, ethanal has a much lower boiling point than methanoic acid.	[2]
	6 07 4 9 50	cores x		
	202 200		es en sen en en enement en en en en en enemente en entre en elemente en est en est en est en est en est en est	
	X21 87	585 505 F		
		(ii)	Outline why ethanal and methanoic acid are both fully miscible with water.	[1]
	* (* (*)			
e:			v_{1} colors as experience as the room receives an expert of room to sent to state of the 0.00000 10.00000	
			ES SEX ES ST ELECTRIC DE POR ESCUESA ROMANA DE RESEAU DO ROMA DE ROMA DE ROMA DE ROMA DE PORTOS DE PORTOS DE P	
-		(iii)	Predict, giving an explanation, the relative electrical conductivity of solutions of methanoic acid, ethanal and hydrochloric acid of the same concentration.	[3]
	Rela	ative e	electrical conductivity:<<	
	Exp	lanati		
	1.1535			
	€ €2€			

Turn over

2. Methanoic acid can be produced by the hydrogenation of carbon dioxide according to the equilibrium

 $CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$

(a) Explain why this process has been extensively investigated in recent years. [2]

(b) State the equilibrium constant expression for this reaction. [1]

(Question 2 continued)

- (c) Bond enthalpies are a useful way of finding approximate enthalpy changes for reactions.
 - (i) Determine the enthalpy change, ΔH^{\ominus} , of this reaction, using section 11 of the data booklet.

[3]

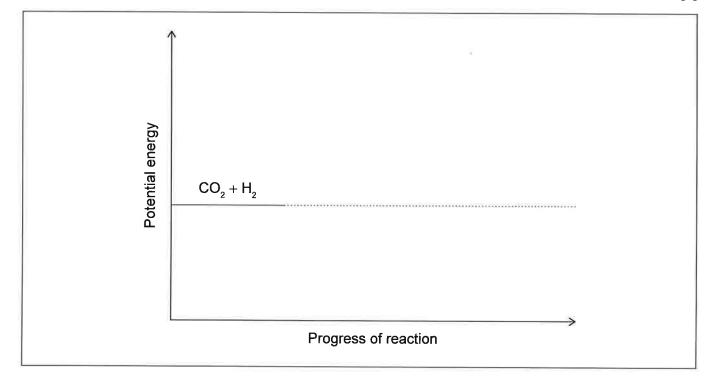
	-		204	\$33	e#	12.5	8	•	4	Sa i	63¥			\$ (0)			.	67 8	¥≅(0.00		03*	•03	• •	•	. ,	()		(.	• · · •	100	33	٠.	۰	 81 1	*88	885	ŧā				:0	100	. :		
*****		• •	107	800	•			• •	•	•		•		•	•	٠							24	\$20	•		9	(4-)	•	2		¥100¥	٠		(*)	 ्	•	•	*(0)			æ	•	•		()(•)	
* * * *		* *	634	***		• • •	r).±)	•		09	• •	•		*25				825	•	10	٠			•		•	•	•	• •			•	•			 •	•		•		•	*	£28 2	3 (3)			
o es e	4	· /•	100		C R	¥63	. () ()	• •		(e	600	(.		•8	•			57.	**	• •			(S.	* (• •	•90	. 6		•:•	ist.	: 8*	:33	8		•	 	•		•		•	٠	•(•	٠	• •	٠	
		• •				•		•	•	•							191	194	¥:0	•		¥ 2	(2.3kg	90		•3		•	•	∵ €	•::•	1 39	٠	• •	•00	 59 6 6	٠		×	• •		÷	1007	*	•) •	: 12	
× 101 5	•••		5 05		•	***	231	503				O.O.	505	,	• •	٠			•	• •	•	• •	٠	٠	• •	•								•	23			-04	200	a5 5		690	¥20¥	*0	• •	6	
																												_												_	_	_	_	_			_

` .	percentage uncertainty of the calculated enthalpy change of the reaction.

[2]

\tilde{p} to \tilde{p} to the second section of the second section of the second section \tilde{p}	
	ALREADY AND ALREADY FOR KINDERSON FOR KINDS FOR A
, we have to some the section of the section of the section $\mathcal{C}_{\mathcal{C}}$	
I consider the proof of the property of the second terms of the s	
	** ** ** *** *** ** *** ** *** ** ***
	*** *** ****** *** *** *** **** ***

(Question 2 continued)


(d)	Deduce how the value of K	ς would be affected by increases in temperature.	
-----	---------------------------	--	--

[1]

*******	3 10 13 140 10 10 10 10 10 10 10 10 10 10 10 10 10	
respect to access to se	OF DIS DIT BOOKS BUT BOWGLESK BUT BOWGLESK KAN BORNALA	* 64 FOR ST 69 YES 49 G RAIR 63 F5 XAIL 65 X

- (e) The conversion of carbon dioxide to methanoic acid is usually carried out over an iridium-based catalyst.
 - (i) Sketch, on the axes provided, energy profiles of the reaction both with and without a catalyst, indicating ΔH and the activation energies.

[3]

(ii) State **one** change, other than carrying out the reaction over a catalyst at high temperature, that would increase the reaction rate.

[1]

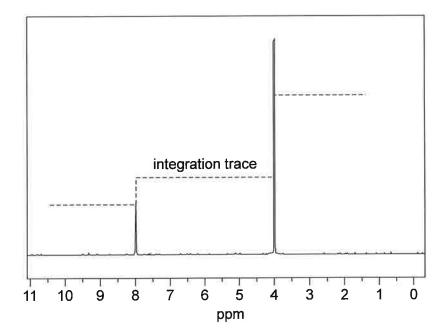
•	•					17.			•	•		•		•	٠	٠	•	•	•	٠		Ď,	•	•	•	٠	•	٠		•	. (7	•	0	,		ŕ		•	į	•	*	•	ķ	•	•	i	•	•	÷.	1	*	•9	ř	Ť	٠	ST.	*	77:	
ě			÷	÷			 ,,		 •		**		411				•00		*:				 • 10		*10					•00	* / CO				200										•01		***					1000		**		0.00		F02	

(Question 2 continued)

(f)		De	te	rm	ıin	е	th	е	0	X	d	a	tic	r	1 :	st	a	te	(of	C	S	31	b	OI	n	Iľ	1	n	16	tl	าล	n	10	IC	а	IC	Id	•																		L
9/87		٠,	823		•••	: ::•	•	٠		*	+::(+		0.0		¥00					•	•		**		•	•	Œ.	:30		*8	•81	ŧ		*:	• ;			•		٠	•			•		٠					्	\$33¢			•	į.	
• • •	٠.			• •									848	•	\$150 \$150 \$150 \$150 \$150 \$150 \$150 \$150	. ;	39			:	ŝ)	C.	×	•		٠		•		•				•	*::		Œ	*:	. ,		œ	23	*	:	•	818	2	•	A	·	Ċ	•	,	٠	٠	ē	

(a)	State the name of the reagent and catalyst required.	
	eagent:	
(b)	1.72g of methyl methanoate is produced from 2.83g of methanoic acid and excess of the other reagent. Determine the percentage yield.	
(b)	1.72g of methyl methanoate is produced from 2.83g of methanoic acid and excess of the other reagent. Determine the percentage yield.	
363	the other reagent. Determine the percentage yield.	
363	the other reagent. Determine the percentage yield.	
363	the other reagent. Determine the percentage yield.	

(Question 3 continued)


- (c) The conversion of methanoic acid to methyl methanoate can be followed by changes in spectra.
 - (i) State **one** similarity and **one** difference you would expect in the infrared (IR) spectra of methanoic acid and methyl methanoate in the region of 1500–3500 cm⁻¹. Use section 26 of the data booklet.

[2]

Similarity:		212.64		33 E.	 1614 1614 SC		0600 100	 ***	24 ¥234 1	•(<•)(•)(e - e	• •	es e		
necess of his	ues na sa				 			 nga r	2 5 5		184 18	•••	101 1	2000	13
Difference:	** ** **			(1005 1005 1	 	*:: 1::: 1	est to	 	r son	100	no fi	• •			• ()•
para no se pose		SIE 4892 48345	a 484 46464		 			 *:* *			• • •	• •		6.7 9 0.39	100

(ii) Deduce, referring to the integration trace, whether the ¹H NMR spectrum shown is that of methanoic acid or methyl methanoate.

[1]

•	•	٠	•	•	×	•	•	• (*	0.1	٠	•	٠	•	•	•	•	٠	٠	•	•	• 7.5	• 33	*	•	8	502	: :	S	E	*	*	•		ð.	10	Ť	*:	• ;	:	 ÷	ž.	• (•		•	•	٠	•	•	•	• •	
		٠						•	*		*			•						•	•	• //		*	•	•	•				•	•	•	•		•		•	•	• •	 •	*	•	•		•	•		•	•	•				

(This question continues on page 11)

Turn over

Please do not write on this page.

Answers written on this page will not be marked.

(d)	State the class of compounds to which methyl methanoate belongs.	
(¥0€ ¥(0)		
ORNER NEE	. HAN DE RECORD DE 1999 DE COME DE DE DES DE LES DES DES DES DES DESCRIPCIONS DE MANAGES DE MARIE DE MARIE DE	
(e)	Draw the full structural formula of the carboxylic acid isomer of methyl methanoate.	

Turn over

4.	Carbon disulfide,	CS ₂ , undergoes gas p	hase hydrolysis accor	rding to the overall equ	uation
----	-------------------	-----------------------------------	-----------------------	--------------------------	--------

$$\mathsf{CS}_2(\mathsf{g}) + 2\mathsf{H}_2\mathsf{O}(\mathsf{g}) \ensuremath{\rightleftharpoons} \mathsf{CO}_2(\mathsf{g}) + 2\mathsf{H}_2\mathsf{S}(\mathsf{g})$$

(a) Calculate the enthalpy change in this reaction from section 12 of the data booklet and the given values:

[2]

~	CS ₂ (g)	H ₂ S(g)
$\Delta H_{ m f}^{\Theta}$	+88.7 kJ mol ⁻¹	–20.6 kJ mol ^{−1}

		•					•	•	•	•	•				•	•	•	•	•	•			•	•	•		•	•	•	•	•	•	•		÷	•	•	•	•		•	•		•	*	•	•0	•	•				*	1	e la	150		*	•	•	: I.		*	î
ì		•			•		•	•		•				٠	٠		٠		•		2.0	,	15	•		•		ħ	•	ŕ	•	*13		:::	÷	্ৰ	٠	*	. ,	•	*	•	5, 1	- 64	83	÷	•	•	÷	æ) (•)	€.		S		٠	٠	•	•	• • •	·:)•	٠	٠
3	33.	23	a		:	্ৰন্	*	•	. 1	• 6		953	15	: •				*:		•)\\	£ 38		2.€	٠	•	•	•	٠	<u>*</u> 03	•		•))	•:(•	•	*	(*	•)	• : 1		:: *	*	*))	8 0	•	÷	÷	•	.);	ě	×		9	(.)	×	83	ě	٠	្ន	•2			24		
,		0)3		639			•		•//	•		680		•		٠	•	•			03	ŀ	:0	23	Ģ.	*		٠			•		•		÷		÷	•			÷					•	• %		•	•	.0.	•	٠				•	٠	•		9	Ó	ě	
1							÷						ě	•	٠	٠	٠	•					٠	•	ě	•	•		٠	ě	•		•	٠	Š	•	•				r (e			65	Ť	e.	•		U.S.	÷	tait	*	٠	8.1	161	*	٠	÷:	•10		•	(/@	٠	٠
				Į,		e.	•	÷	•	•0				্	•			•			53.	٠		::	37	***	*13		•		•000	, ,	•		*)		•	•			•		00		•	×	•		•	•	•(()•				654		•		¥00		00	69		

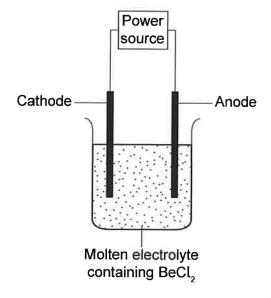
(b)	Deduce the molecular geometries of CS ₂ and H ₂ S, and the reason why they
	are different.

[2]

Molecular geometry CS	2	
Molecular geometry H ₂ s	S	
		F KO KOKO KO KOKOKO 60 KOKO 60 KOKO KO KOKO 60 KOKO 60 KO
*****	**** ** ***** ** ***** ****	

(Question 4 continued)

(c) Sulfur has a number of natural isotopes and a sample of sulfur was enriched in $^{36}_{16}$ S, to produce a mixture with the following composition:


Isotope	Percent
³² ₁₆ S	90%
³³ S	1%
³⁴ ₁₆ S	4%
³⁶ S	5%

(i)	Calculate the relative atomic mass of this enriched sample, correct to two decimal places.	[2]
202 Blood 409 B		
	THE REPORT OF THE PARTY OF THE PROPERTY OF THE PARTY OF T	
6 e e e e e e e	THE REPORT OF THE SAME OF SAME OF SAME AND	
ACRES 408 ACRES	THE REPORT OF THE PART OF THE	
(ii)	State the technique by which the percentages of different isotopes in this sample could have been determined.	[1]

(iii)	In naturally occurring sulfur, the relative abundance of $^{36}_{16}$ S is only 0.0100%. Calculate the number of atoms of this isotope that would be present in 1.00g of natural sulfur. Use sections 2 and 6 of the data booklet.	[2]
	*** ** ** *** ** ** ** ** ** ** ** ** *	
x 633363 13		
a new tar to	na ka 1990 (il 1999) ka nana na mana na manana na mana na mana na mana na manana na manana na mana na m	
06 MOX08 4004 Mos	ed no contra sa santo o no entra entra el 200 de 200 d	
75 STORTH STA STO		

Turn over

- 5. Beryllium is a low-density metal that is used in specialized lightweight alloys.
 - (a) The production of beryllium is illustrated in the diagram.

 (I) 	Outline why molten BeCl ₂ is considered an electrolyte.	[1]
(ii)	Identify the electrode at which beryllium will be produced, and the polarity of that electrode.	[1]
Electrode:		
(iii)	Write a balanced equation for the reaction occurring at the other electrode, to the one you identified in 5(a)(ii).	[1]
2 100000 to 1		

(Question 5 continued)

				_	et —	C	re	ea 	S	es	1	rc	m) E	3e	to) I	В. —						_																				_		_	_	_	_	_
	· •	,	:3€	•	•			*			: : : : : : : : : : : : : : : : : : :	::			•	S.			g.•	5).0		•	i.	•		•	•			٠			92	(e)	200	nv.		\$3	0.00		6 (0)	1 11	• •			37 4	1 13	*:	69.	•
•			502		•)))(•	÷	*		©.€	ĸ	• :		• (•	£5			• (•	*	•	۰	•2		•	515	100	*	 5 5 U	•		101	•	0	5/7	•	ě	• (•	•))		• •	٠			• •	27.		
٠	•			3.0	٠		20			: :		¥		•	ુ		¥.0		::	2		×	(3)	•	•	 •		C7#	1 00	83	 •	*:•		•:::•	*33	•	•100	***	•	•100	•	1 72	• •	٠	* *	es t	• •		es i	ō
	::•		834	*	•	•		٠			50.	Ť	•	٠	·		•0		•	٠		•	٠	٠					200	**	 		%		***	::34	200.0	I (#)		*:20	*	•) •	• •			80	• •	S .	e (e)	•
			•		•	Q.		0.00	×		~	×	• •		×	:00 :	•	11.5	۰	15	180	×		÷	*65		15	•	:::	100	 ٠	3 :	٠	•	•		•	•	•	•	٠	• •	•	•						
2	202	12	102		Ų,			0.2		8 3			125.13	0 10	00	2002	200	- 0	00.20					-2	200	 e racio	· ·									4779	*22	:. .		****	II : • > :					: (* /		4		

Disclaimer:

Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB.

References:

3cii.

[¹H NMR spectrum], n.d. [online] Available at: https://m.chemicalbook.com/SpectrumEN_107-31-3_1HNMR.htm [Accessed 17 June 2022].

