

Chemistry Standard level Paper 3

8 May 2024

Zone A afternoon | Zone B afternoon | Zone C afternoon

er	numb	ession	late s	Candid	Ca	

1 hour

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- A clean copy of the chemistry data booklet is required for this paper.
- The maximum mark for this examination paper is [35 marks].

Section A	Questions
Answer all questions.	1 – 2

Section B	Questions
Answer all of the questions from one of the options.	
Option A — Materials	3 – 4
Option B — Biochemistry	5 – 8
Option C — Energy	9 – 11
Option D — Medicinal chemistry	12 – 15

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. This question is about the rate of reaction between bromine and methanoic acid.

$$\mathsf{Br}_{\scriptscriptstyle 2} \left(\mathsf{aq} \right) + \mathsf{HCOOH} \left(\mathsf{aq} \right) \to \mathsf{2Br}^{\scriptscriptstyle -} \left(\mathsf{aq} \right) + \mathsf{2H}^{\scriptscriptstyle +} \left(\mathsf{aq} \right) + \mathsf{CO}_{\scriptscriptstyle 2} \left(\mathsf{g} \right)$$

(a) State and explain how the rate of this reaction, measured in **mol dm**⁻³ **s**⁻¹, could be monitored experimentally.

[3]

(b) The change in bromine concentration was monitored.

(This question continues on the following page)

(Question 1 continued)

(i)	Determine the instantaneous rate of reaction to two significant figures when $[Br_2] = 0.0080 \text{mol dm}^{-3}$.	[3]
	EX NUMBER OF BUILDING OF BUILDING OF BUILDING OF BUILDING OF BUILDING BUILD	
	$0.3563 t_{\rm c} t_$	
X 7 X 6 3 K (4 9	63 FER FOR BOOKER LO BOOK FOR DATE FOR DATE FOR DATE FOR BOOK FOR FOR BOOK	
.,	21 YEAR 22 DOOR AT 12 PERT 12	
(ii)		
(ii)	Outline why the graph has a negative non-linear slope.	[2]
	Outline why the graph has a negative non-linear slope. or negative slope:	[2]
		[2]
	or negative slope:	[2]
Reason fo	or negative slope:	
Reason fo	or negative slope:	[2]

Please do not write on this page.

Answers written on this page will not be marked.

24FP04

- 2. Green chemistry focuses on the design and implementation of chemical processes to reduce waste, conserve energy and discover replacements for hazardous substances.
 - (a) (i) Four metrics of green chemistry effectiveness are:

Metric	Definition	Result which yields maximum effective green chemistry
Process mass intensity (PMI)	ratio of the masses of all materials used (water, organic solvents, raw materials, reagents, process aids) to the mass of the desired product	1
E-factor	mass of waste divided by mass of desired product	2272244 22224 22 ESTER ESTER ESTER E
Atom economy	total mass of desired product divided by total mass of all reactants	CONTRACTOR OF SOME STATE OF SO
Eco-Scale	100 minus penalty points (points deducted for low yield, price, safety, technical setup, temperature/time, and purification)	

	The number that yields the maximum effective green chemistry result is given for P	MI.
	Estimate a number for each of the other three metrics.	[2]
(ii)	Identify the metric that does not account for solvent use.	[1]
total total		
00163# #0# 00760		

Suggest a reason why the pharmaceutical industry has a much worse PMI

(III)	measure of green chemistry than other chemical industries, such as the oil refining industry or bulk chemical production.	
110 (110)		
1 10 10 10		

(This question continues on the following page)

(iii)

[1]

(Question 2 continued)

(b) (i) There are two methods of producing benzamide from bromobenzene. Scheme 1 is shown below.

Scheme 1 has a yield of 82 %, requires a nitrogen atmosphere and is activated via microwave radiation.

The MSDS safety codes for the affected reagents are: Bromobenzene (N), Formamide (T), KO *t*-Bu (F), dppf (T)

Eco-Scale = 100 - penalty points.

Penalty point deductions based on Eco-Scale:

Parameter	Penalty points
N (dangerous for environment)	5
T (toxic)	5
F (highly flammable)	5
F+ (extremely flammable)	10
Yield	(100 – %yield) 2
Unconventional/electromagnetic activation technique	2
(Inert) gas atmosphere	1
Heating < 1 hour	2
Heating > 1 hour	3

(This question continues on the following page)

(Question 2 continued)

	Determine the Eco-Scale for Scheme 1, ignoring Pd(OAc) ₂ and imidazole.
(4 (4/3) to 10 (4/3)	
* *****	
* *(*)*(*)*	
N 2000/2002/00 1/02	. 1224 123 124 124 124 124 124 124 124 124 124 124

(ii) Scheme 2 is shown below.

Scheme 2 has a yield of 76 % and is carried out under a CO atmosphere.

The MSDS safety codes for the affected reagents are: Bromobenzene (N), CO (T, F+), HMDS (F), DMF (T), $P(C_8H_5)_3$ (N)

Suggest one reason why Scheme 2 has a lower Eco-Scale score than Scheme 1. [1]

* 1	٠	,	•	•(0)	1/3	(E) #	9	99	00	•0	• ?	×	ŧ	ř	•	•	×	•	×	•	e.	×	•	10.	• 0	•	*	•	17.		•	•	t	*	٠	*	•		,		Ug	C	•	•	•	*:			ž.	•	•		÷	•	211	•	ŝ	÷	*:			3		t	e.	•	•	1	1	1	ł
	:83			(55)	• • •	8834	9	600		•.0		•	÷	÷	*	• 1	•:	•01	•	÷	3	×	•		•10	603		×	::•	9	•0	•	×	83				2	,	60	00	60	03		¥(S	•	•	• 8	ķ	•	•	• 5	·	86	•	٠			*		60	S	×	•	÷	*		٠	•	60 4	·
2			::	177	70	0.		570	.00				:00		£6		100		1	207	ru.	ç			, j					-								٠.				816	100			**		e s											•	8		-50						32		234	

Section B

Answer **all** of the questions from **one** of the options. Answers must be written within the answer boxes provided.

Option A — Materials

3.	Nitin	ol, Ni	Ti, is a shape memory alloy composed of 50 % nickel atoms and 50 % titanium atoms	
	(a)	(i)	State two differences between alloys and composites.	[2]
	\$28 L\$3	20 10 10 10 10 10 10 10 10 10 10 10 10 10		
	(0)()	*** *** *	CHAINS BUT FOR BUT	
	£14690	PCR RCR R	CALLE AND ACTOR FOR AND	
		(ii)	Calculate the percentage composition, by mass, of Ni in nitinol.	[1]
	\$5\$58	e e :		
	• • •	• • • • •		
	#2/#0#	168 E E E		
	(b)		nium is highly reactive and the production of pure nitinol is difficult. One method of ducing high-grade nitinol is by plasma arc melting.	
		(i)	Outline the nature of the plasma state.	[1]
	****		CATA NO SCRIB RO SO ROSCA NO ROSCA NO ROSCA NO ROSCA NO ROSCAN NO ROSCA NO ROSCA NO ROSCA NO ROSCANO NO ROSCA ROSCA NO ROSCA NO ROSCA NO ROSCA NO ROSCA NO ROSCA	
			the first first the state of th	
		(ii)	The plasma torch used is similar to that used in inductively coupled plasma (ICP).	
in .			Identify a gas used to produce the plasma.	[1]
	10.01	pro see s		

(Option A continues on the following page)

(Option A, question 3 continued)

(iii) Explain the significance of this plasma in the production of pure nitinol.	[2]
(c) Chemical vapour deposition (CVD) can be used to produce nitinol or graphene. Outline the production of graphene nanotubes using CVD.	[3]
Source of carbon:	
(d) Nickel and its compounds can be used as a homogenous or heterogeneous catalyst. State one advantage and one disadvantage of a homogenous metal catalyst.	[2]
Advantage:	
Disadvantage:	
AND THE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE RESERVE THE THE STREET OF THE	

(Option A continues on the following page)

(Option A continued)

- 4. Polystyrene is a thermoplastic polymer.
 - (a) One method of producing the monomer, styrene, is by oxidation of ethylbenzene.

$$\mathsf{C_{6}H_{5}CH_{2}CH_{3}\left(l\right)} + \frac{1}{2}\mathsf{O}_{2}\left(g\right) \mathop{\Longrightarrow}\limits \mathsf{C_{6}H_{5}C_{2}H_{3}\left(l\right)} + \mathsf{H_{2}O\left(l\right)}$$

Calculate the percent atom economy for the production of the monomer by this route. Use sections 1 and 6 of the data booklet.

[1]

•		•	•		•	 •	•		•	•	•		•	•		•	•	•	 •	•	•	•	•	•	•	•	•		•	•	•	•	•		•11	•		•	•	•				•	•	•		•	•		al C	•
	·			٠		 •	•	5					•		315		•		÷				٠	•3					23		 10	vi.		10.0				 •:		•		 					8 20		*25	 	::::	
				10 * 0			***	•50•				1000	•55		e e		*10				orac.					•20	m1.0) (C)		 7.0	*1:		 			•				. 13	 0.74							•			•

(b) Distinguish between thermoplastic and thermosetting polymers by referring to the interactions between polymer chains, the effect of reheating them and their ability to be recycled.

[3]

Type of polymer	Interactions between chains	Effect of reheating	Can be recycled?
Thermoplastic	*** ** ** *** ** *** **	tid form the total for the tot	**************************************
Thermoset	ACTION TO A TOTAL POSITION TO A POSITION TO A POSITION AND ACTIONS AND ACTIONS AND ACTIONS AND ACTIONS	THE ROPLE THE REPORT OF THE PROPERTY AND AND ADDRESS.	#03# #03#00# #03# #03#03# #03# #03#03# #03# #03#03# #03# #03#03\$ #03# #03#03# 02:05 #03#03\$ #103 #03#03\$

(c) Some thermoplastics exhibit liquid crystal properties.

Discuss **two** properties, other than chemical stability, these thermoplastics must have in order to be classified as a liquid crystal.

[2]

	1/2	117							•				•					•		٠				٠			٠	•	٠		٠	•	•	•	٠	•		4	•							•		٠	•		٠	•	•	•	•		• ()		•					• 15		1	•	
,	į	UÇ	,			e	÷	*::	Ť	•	٠	•	,			1			: D	*		•	٠	•	*	e.	•	٠	*			*	Ť	*			1.0	Ť.	•	91.3	9 1			ı.	٠		•	3.5	*	,	35	82	•	•	•	ė	:00		10	505		50	. :	•33		6 6	101	,
3		70	,	5.0	٠	(*)	•	*:	÷	ě		•		555 †	,	::+	٠		⊙ •.	și.		•	٠	۰	*0	*	*:		٠		3	•	*	•	•		•00		•	•))	60	030						5.0	٠			ě	÷	•	٠		•(1)	. 3	• ; - ;	a));	. 1	•	. ,	•00	0)/5		600	i
24	592	633			×			\$ 23				134		800	9	344	12		V.	23		(2)	•	¥	40	÷	(4)		•		٠	£8	÷	÷	•	¥	3 10	ě	•		erii	63							٠		v	÷	i		• 1	÷		2 7	173	1/1	ě le	5.0	2 (. (1)	a g	i	1772	
•	٠	. (•	3.0	٠	•	•	•		•	•		•)•	2.00	٠	•	*		•	•	•	•	•	•	•	•		÷	•)	•	•	•	٠			•					ě	٠		•	٠	٠	ě		•	ž	•	٠	į	71.0	,		vi.	į		3 3	•	7.8		50.10	,
3.5	٠	23	,		*	٠	*	•	ŝŧ	*		્•		::	,	110	*			•	8.	*	٠	*	5		50	٠		٠	٠	•66	e.	•	•		•	ĕ	•	•	352	93	902			ęχ		œ.	٠		3	*:	ė	•	•(1)	•	•	. ,	•		e p			•00	F09		559	i

(Option A continues on the following page)

(Option A, question 4 continued)

(d) An IR spectrum of a recyclable plastic is given.

Deduce the bonds in the polymer responsible for the peaks at A and B and the Resin Identification Code (RIC), using sections 26 and 30 of the data booklet.

Bond causing peak B:	
Bond causing peak B:	THE RIGHT HE WAS IN THE WAY OF WHAT THE WAY WAS AN ARREST OF MINE SECTION OF
RIC:	

End of Option A

Turn over

[2]

[2]

Option B — Biochemistry

5. Amino acids combine to form proteins.

(a) (I)	identify the bond responsible for the primary structure of proteins.	[1]
to a receive that	CAN BE BERET TO BEN TO EXCEPT BE REPORTE BE AND BE AS FOR A BENERO AS FOR A BENERO AS FOR A	50 4 14 52 6 0

(ii) Identify the type of metabolic process that occurs during synthesis of proteins. [1]

(b) Some proteins act as enzymes, which catalyse biological reactions. Explain the shape of the graph at point X.

E# +	192		1800	854	88	12		•			٠	•	â		•	٠	Œ.	\$ 17		23	84	ě	•	÷	i	•		: :		-	•		257			٠	·	à			gy.			Y	٠	٠	٠	٠	٠	• (•	•		•	•	•	•	•	•	
			•	٠	• ()	•	•)		• (•	•	•	٠	•			٠	•	•0			٠		•	•),	•	•)	į.	101	÷		•	•			(35)	٠		•	1 6	100	135	7		*:		•	1	e e	ħiii		• 33	235		37.	2		25	83	•
98.	S.S.	83	*::	8.0	* 35		٠		• • •	e i e	*:	•	×	:0:1	*	٠	×	:0			() *		8.5	•0	÷	•				×		٠	•	. ,	•	٠	•	×	*/(. 7	93	63 •	٠		٠	·•:	*	٠	٠	•00		• •	038		£.	•		×	X:	
	21	*89	900		****	×	(4)			()(#	*	٠			*		٠	es	. 9			(e	•	9 10	(÷	***	*00	e li	i (i		•	*	•				•	æ	. 85	. :	88	84		Si	÷	•	•	٠	÷	•	. :		i i			•	100	្ន		
				1				•						00%				200	1		•	•	٠	20	4	•					•	•			•	٠	٠	÷	•))					(•	٠	•	٠	•	10			•	÷	110	ě	•	3	•	è

(Option B continues on the following page)

(C) Explain why globular proteins are able to be transported around the body. [2] 6. Eicosadienoic acid, $M_r = 308.56$, is a fatty acid found in human milk. (a) (i) Eicosadienoic acid has an iodine number of 164.5. Determine the number of C=C double bonds in each molecule of eicosadienoic acid, showing your working. [2]

(ii) Eicosanoic acid is a saturated fatty acid with the same number of carbon atoms as eicosadienoic acid.

Explain why eicosadienoic acid has a lower melting point than eicosanoic acid. [2]

(Option B continues on the following page)

Turn over

(b)	(i)	Eicosadienoic acid may undergo rancidity.	
		Identify two conditions that favour the rancidity reaction.	[2
	na 2000		
()*		or considerable and the first of the first of the first of the first of the first $0.733197323197373197373197373197373197373197373197373197373197373197373197373197373197373197373197373197373731973737319737373197373731973737373$	
	(ii)	State the name of one class of organic compound produced by the rancidity reaction.	[1
9 FW	v. 404. 404	DE NUMBERS AND	
(c)	Asc	orbic acid (vitamin C) may be added to foods to prevent rancidity.	
		lict, giving one reason, whether ascorbic acid is soluble in oil. Use section 35 of data booklet.	[1
		NESS SEE STATE OF STATES AND STATES AND	
* *2*2	×1908 908	*** ** *** ** *** ** *** ** *** ** *** ** *** ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** **	
78 #37#EE	2244 404	WAR HE SHEET HE KEEK HE SHEET HE HELD HE HER HE HER HELD HE HE	
Mon relat	osaco	charides and polysaccharides have different properties and functions that are their structures.	

(Option B continues on the following page)

24EP1

(Op	tion B	, question 7 continued)	
	(b)	Glucose or starch can be mixed with active ingredients to produce tablets such as aspirin. The carbohydrate molecules break away to release the drug.	
		Suggest why a drug made with starch is released more slowly in the stomach than one made with glucose.	[1]
	12) <u>2</u> 1552 1		
	8 600 8 600		
8.	Hea	yy metal toxicity is a problem in the environment.	
	(a)	Suggest one source of cadmium pollution.	[1] ——
	(b)	Explain how host–guest chemistry can remove cadmium from contaminated waterways.	[2]
	0.5.A		
l			- 1

End of Option B

${\bf Option}\;{\bf C}-{\bf Energy}$

Nucl	ear fission is an important source of energy.	
(a)	Outline why only heavy nuclei are capable of spontaneous fission reactions.	[
94774 493	EA E SA E SA E E E E E E E E E E E E E E	
U# (d # 1 ±359		
(b)	Write the equation for the spontaneous fission of 254 Cf into the two smaller nuclei, 118 Pd and 132 Te.	[
(350) (1000)		
(c)	Explain the storage and disposal of spent fuel rods from nuclear reactors, which are classified as high-level nuclear waste.	[;
F9 F0	\$25 P4 P3 P5 P3 P3 P4 P4 P5	
## ##	*** ** *** *** ** *** ** ** ** ** ** **	
- ES ES		
1609-100	A RIGHT WARR AND ARREST AND REAL RESIDENCE AND ARREST ARREST AND ARREST ARREST AND ARREST	
***	AND THE BANK HE PLEA TO LEVE THE THE MEN HE WASHING AND MEN HAS BUT HE WASHING HE WASHING THE WASHING HE	
tat te		
(d)	Fusion reactions can run on abundant cheap fuel and produce minimum radioactive waste. Suggest one reason why, despite these advantages, energy is provided from fission rather than fusion reactors.	[
5d 55		
€00 ¥0		
1991 900	NEW TO NAME TO NAME TO AND	

(Option C continues on the following page)

(Option C continued)

10.	Ene	gy from the sun can interact with molecules in various ways.	
	(a)	Describe global dimming and its causes.	[3]
	(b)	(i) Identify the feature of chlorophyll that allows it to absorb sunlight.	[1]
	#: # # #:# #		
		(ii) Write the summary equation for photosynthesis.	[1]
	## ## ## ##		
	(c)	Identify the compound that has the largest overall contribution to the greenhouse effect and explain its interaction with infrared radiation.	[3]

(Option C continues on the following page)

(Option C continued)

11.	Batte	eries a	and fuels provide portable sources of energy.	
	(a)		gest, with a reason, if specific energy or energy density is a better measure of a susefulness as an everyday portable energy source.	[1]
	• • •	••••		
	505 50	enement to		
	600 XX	CRIMER K		
	• • •	•••	d from the rows the property the property respective the property and property and the property and the property and the property and the property of the property and the property of the pro	
	(b)	(i)	Ethylbenzene, $C_6H_5CH_2CH_3$, is an aromatic compound that is used to increase the octane rating in petrol (gasoline). It has a specific energy of 4.135 \times 10 ⁷ J kg ⁻¹ .	
			Calculate the enthalpy of combustion of ethylbenzene, in kJ mol ⁻¹ , using section 6 of the data booklet.	[2]
	10 E			
	#30# #60	000000000000000000000000000000000000000		
	1891 480	oucus a so		
			লাকাৰ্য্য কৰে কৰিছে কৰে ব্যৱস্থা কৰে কৰিছে কৰে কৰিছে কৰে কৰিছে কৰি ব্যৱস্থাককৈ কৰি আৰক্ষি কৰি কৰিছে কৰি কৰিছে ক	
	00 *00	ORIECE ES	***** ***** *** *** *** *** *** *** **	
	#189 9/S	OKOCK KO	* * * * * * * * * * * * * * * * * * *	
		(ii)	Distillation of crude oil does not yield enough aromatic compounds for addition to petrol. Explain how aromatic compounds are formed from alkanes.	[3]
	ē0. 60			
	503 500	orer te	N NOW HE WERE HE KIND HE HE HE HER HE KIND HE HERE HE HERE HE	
	ES 183	e a a a		
	100 100	ue est te		
	00 K	O(((0)8-6)	S REAL FOR MINES FOR ROBER FOR FOR ROBER FOR ROBER FOR ROBER FOR ROBER FOR ROBERT FOR RO	

End of Option C

[2]

Option D — Medicinal chemistry

12. Antibiotics and antivirals are important in the fight against disease.

(a)	Describe how penicillin acts against bacteria.
404 90	
• • •	
121 13	es to sous to test to be the to besite the to except by exercising the fire between the beside to the fire

(b) (i) Draw a circle around the section of the penicillin structure that is primarily responsible for its activity.

[1]

(ii)	Explain, with reference to its structure, why this section of penicillin is reactive.
	SS KONDO KON NORTHOGODO KON KON KONDO KON MINON KONDO KON NORTHOGO KON MODIO KONDO KONDO KON KONDO KON KONDO KON KONDO
s sesses ses ses	er para ko ka kuna to ka musa ka kino tora ku ka musa ka kuna ka mina kata kata kata ka ka ka ka ka ka ka ka k

((C))		(D	ut	li	ne	€	tŀ	16) (da	ar	าด	je	r	s	С	f	а	'n	til	bi	io	ti	С	٧	Vá	38	sto	е	ir	1	h	е	е	n	vi	rc	on	m	ìe	n	t.																				[1
b				Ţ	7	•	•(/		V)(*	Ċ		,	7//	Į.	100	,	•).	•	,					*		**	٠	•	ŧ		•	•			÷). * /	•	1 23		S.*	*2				*3	•	161	÷						•		*5	·	•		e.					
ä		÷	*	٠	*	•	•			•	0.0	ć ⊙	•	÷	•		•0	• ()	* *	0.D.				*		٠	٠		*	•	.	*:	. ,	•	*	٠	•	1000		S()	æ	•		05*	*	*:	· · · ·	æ	•			٠			659	62	e	• • •	•	(€)	ě	:::	•		
8		0.54	*	•	SQ.	1 60		e ja	::: <u>:</u>				40	34	201		•	•37	2 :	124					· •	¥	•	٠	20		\$ 15	• 1		180	*	٠	¥				¥	•		E 34	*	•	834	¥	•	į.	93		•			23	÷	•		•	٠	8 53			

(Option D continues on the following page)

Option D, question 12 continued

(d)	(i)	Oseltamivir (Tamiflu) and zanamivir (Relenza) are antiviral drugs. Their structures
		are given in section 37 of the data booklet.

Deduce the name of **one** functional group that is in both structures and the name of **one** functional group that is present only in zanamivir.

[2]

	Functional group in both structures:	
	Functional group in zanamivir only:	
	(ii) State why viruses are more difficult to target with drugs than bacteria.	[1]
13.	Aspirin and codeine are used as pain relievers. (a) (i) Describe how a strong analgesic, such as codeine, works.	[2]
	(ii) Explain why long-term codeine usage is addictive.	[2]

(Option D continues on the following page)

Option	D,	question	13	continued)	Ì
--------	----	----------	----	------------	---

	(b) People can develop tolerance to codeine. Outline the meaning of tolerance.	[1]
	(c) State one use of aspirin other than for pain relief,	[1]
14.	Excess acid in the stomach can cause the breakdown of the stomach lining.	
	(a) A single dose of an antacid contains 2.320 g of sodium hydrogencarbonate, NaHCO ₃ , and 0.500 g of sodium carbonate, Na ₂ CO ₃ .	
	$M_{\rm r}({\rm NaHCO_3}) = 84.01$ and $M_{\rm r}({\rm Na_2CO_3}) = 105.99$	
	Determine the amount of stomach acid, in mol, neutralized by this medication.	[2]
	Determine the amount of stomach acid, in mol, neutralized by this medication.	[2]
		[2]
		[2]
		[2]
		[2]
		[2]

(Option D continues on the following page)

(Option D continued)

15.	Man	y medical procedures involve the use of radioisotopes.	
	(a)	Justify why protective clothing and instruments used in nuclear medicine may be classified as low-level waste.	[1]
	14 W 16 16 16 16 16 16 16 16 16 16 16 16 16		
	64 #55#59		
	(b)	Suggest one suitable disposal method for this low-level waste.	[1]
	54 (R954) 54		
		care and and and was the more and	

End of Option D

24EP22

Disclaimer:

Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB.

References:

- 1. (b)(i) Science Skool. Kinetics. [pdf] Science Skool. Available at: http://www.scienceskool.co.uk/uploads/9/5/5/0/9550437/ kinetics a2.pdf> [Accessed 24 April 2019]. REFERENCE REDACTED.
- 2. (a)(i) Dicks, A.P., Hent, A., 2014. The E Factor and Process Mass Intensity. Green Chemistry Metrics pp45-67, [e-journal]. Available through: Springer Link website https://link.springer.com/chapter/10.1007/978-3-319-10500-0 3?noaccess=true> [Accessed 24 April 2019].
 - Van Aken, K., Strekowski, L., Patiny, L., 2006. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein Journal of Organic Chemistry, 2:3 [e-journal]. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1409775/ [Accessed 24 April 2019].
- FTIR/Raman/NIR Spectral Libraries. [online] NICODOM Ltd. Available at: http://www.ir-spectra.com/polymers/ [Accessed 29 April 2019]. REFERENCE REDACTED.

Please do not write on this page.

Answers written on this page will not be marked.

24FP24