

Biology Standard level Paper 3

13 May 2024

Zone A afternoon | Zone B afternoon | Zone C afternoon

	Cano	lidat	e se	ssio	n nu	mbe	r	
_			_		4			

1 hour

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- The maximum mark for this examination paper is [35 marks].

Section A	Questions
Answer all questions.	1 – 3

Section B	Questions
Answer all of the questions from one of the options.	
Option A — Neurobiology and behaviour	4 – 6
Option B — Biotechnology and bioinformatics	7 – 10
Option C — Ecology and conservation	11 – 14
Option D — Human physiology	15 – 19

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. An experiment was carried out to measure the osmolarity of cantaloupe (fruit of *Cucumis melo*) tissue by placing pieces in salt solutions of different concentrations. The results are shown in the graph.

(a	1)		(i)			D	ef	in	е	0	sn	no	ola	ari	ty	' .																															[1	1
						_		_						_				.5					_	_		_					_	_	_			_				_		_	_	_	_			
90	€ 00€	•::•	ć.	• 9		9-3	•	•		×			::	600	9		£ :		1 00	 •	i i	::::		•	• 1	¥	4		¥	157	¥	 1			Ŋ	٠			•	• •	•	•	•	•				
* *	•==•	•		• •	•	(*)	.	() .		*	a 1	•	ci y i	•555		0.00		<	87		36	•000			•	*0	·	• •	(•)	•:•	*20			698	. 100	•	(i) (i)	e k		es.	(45)		: 39					

(ii)	Identify the concentration of salt solution with an osmolarity equal to that of the cantaloupe tissue.	[1]

(This question continues on the following page)

(Question 1 continued)

(b)	 Using the graph, explain what happened when the pieces of tissue were placed hypertonic salt solution. 	d in a [1]
2020	NO NA NASANA NA NASANA NA NASANA NA NASANA NA NASANA NA NASANA NASANA NA NASANA NA NASANA NA NASA NA NASA NA N	
¥6.403	ES ES ESE EN ENS EN EMB EN ERM EN EN EMB EN EMB EN EN EN EN EN EN EN ERMEN EN EURENE EN EMB EN ENTE EN EN EN E	*********
•) •)		
*5*57		CORCUR ACCE ACCE DO
(c)	Describe two factors that should be kept constant in this experiment in order to an accurate measurement of the osmolarity of the cantaloupe tissue.	o obtain [2
(c)	Describe two factors that should be kept constant in this experiment in order to an accurate measurement of the osmolarity of the cantaloupe tissue.	
(c)	Describe two factors that should be kept constant in this experiment in order to an accurate measurement of the osmolarity of the cantaloupe tissue.	
(c)	Describe two factors that should be kept constant in this experiment in order to an accurate measurement of the osmolarity of the cantaloupe tissue.	
(c)	Describe two factors that should be kept constant in this experiment in order to an accurate measurement of the osmolarity of the cantaloupe tissue.	

2. Three different seawater mesocosms were set up to measure the effect of variations in the concentration of carbon dioxide (CO₂) on the growth rate of two genera of phytoplankton over a 14-day period. CO₂ concentration was measured in parts per million (ppm).

Three concentrations of CO₂ were chosen to simulate atmospheres of the pre-industrial age (270 ppm), the present day (400 ppm) and predictions for the year 2100 (780 ppm). Growth rate was determined by recording the cell counts each day and calculating the increase in the number of cells per cubic centimetre per day. The graphs show the growth rate of *Skeletonema* and *Nitzschia* in the three different mesocosms.

(a)	State what the error bars on the graphs signify.	[1]
* **		
2182		
(b)	Distinguish between the results of the two genera shown in the bar chart.	[2]
:5	THE COURT OF SECURE AS A SECUR	
*5*0*		
864		

(This question continues on the following page)

(Question 2 continued)

(c)	On the basis of the data in the graph, suggest changes that might result from an increase in carbon dioxide concentration to 780 ppm in the ecosystem where these phytoplankton occur.	[2]
.5136 88		
3634 K	ON HER DEED TO A TOTAL TO A STANDARD AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS A	
163 X		
.69.8		
400		
ES X	THE REPORT OF TH	
363 E	anasa na manika mana na mana na mana na ma ma ma ma ma ma mana na mana na mana na maha na maha NA MANA NA MANAS	

Turn over

3. In a study of the effects of exercise on ventilation, tidal volume and ventilation rate were measured at different intensities of exercise. The tidal volumes and ventilation rates were multiplied together, to obtain the total volume of air taken into and then expelled out of the lungs per minute. Oxygen consumption at the different intensities of exercise was also measured. The results are shown in the scattergraph.

Describe the relationships of exercise intensity with O_2 consumption and with total volume of air inhaled per minute.	[
	- Kana ng antang ng bong ng kutang ng kuta ng kutang ng kong ng bong ng bong ng kuta ng bong ng bon ng kong ng

(b)		E	⟨p	ai	n i	no	W	th	e	in	cr	ea	38	е	ir	1 6	ex	е	rc	is	е	Ca	au	se	S	а	cl	าล	ng	је	in	th	ne	tc	ta	Ιv	ol	un	ne	0	fa	air	in	ha	le	d.
3852 8	85 9	• •		239	8); * .)	• •	200	:231	.		\$133		9		83	.			•	::::	#1		s(*)	3 8	1832	*65	808	£.65		• • •	100			. 500			S. S. S.	* *:			505		60 *	• (•)		
	()÷			٠		٠.	•	• •	•	••			•		٠	•		•	•		٠	٠	٠		0.	•		• 10	٠		• (•	·		•			•			•		, ,	•		, ,	•
1278-2			2.	84		• •	::¥		\$ 33		200		•		•	200			*	****		4 6	81 6 2	92 ¥		¥::	64	18	**		85	8		.5		3 0	•	2 23		34			e a			
0000 B		• •		*	• • •	• •	::€	•(0)	•	•]:•	• 8					*(0)		(0.00		*33	*	•	(•)		e::•		e:#	*)))9		• •	k://	*	* 1 7	2	x = 85				× +	Ç.	• (•)	œ.		* (*)		

(This question continues on the following page)

(Question 3 continued)

(c)	Predict the effect of emphysema on a person's response to moderate exercise.
2000 100	
1918-80	
***	CANA DA RANGO DA MAN DA MAN PARRON DO RO NOM DO ROM DO ROM DO PORTO DO PORTO DE PORTO DE PORTO DE PORTO DE PORTO DE
Box Roo	
600 X0	

Section B

Answer **all** of the questions from **one** of the options. Answers must be written within the answer boxes provided.

Option A — Neurobiology and behaviour

(i)

4. (a) The diagrams show the development of neural tissues in the brain of a child.

shown in the images.	[2]

(ii) Outline the main process that occurs in the brain between 6 years old and 14 years old, as shown in the images.	[1]
THE RESERVENCE OF SOME OF COURSE CONTROL OF PROCESS OF SOME OF	

(Option A, question 4 continued)

(b) The image shows the human brain.

(1)	Identify the name and function of X indicated in the image.	[2]
Name:	NA REGIONS OF MAIN HIS BOOK HOW HAVE HE MAIN HIS HE MAIN HOW HE MAIN HE HE MAIN HE HE MAIN HE WAS AND HE WAS AND	
Function:		
(ii)	The brain has a very high rate of metabolism. Suggest its major source of energy.	[1]
	THE PROPERTY HAS NOT A THE WAY HE HAS NOT HER HER WAYS AND AND HE HOWEVER HE WHEN HE HOWEVER HER BOOK HE SHAWN THE	
(iii)	Broca's area is active in the fMRI section of the image shown. Predict what the person was doing when the scan was taken.	[1]
ROWER WOR MORES		

Turn over

(Option A continued)

(a)	Olfactory receptors detect different odours. Describe two characteristics all olfactory receptor cells must have in common.	[
5000 pm		
(m/160 = #)25		
8 505 50		
64.6		
pro es		
(b)	Suggest two types of behaviour in mammals that could be affected by the detection of particular odours.	
(* % E)	THE POWER BY HER ROOM HER POWER HER POWERS HER POWERS HER ROOM HER RECORDED HER RECORDED HER ROOM HER ROOM HER ROOM HER	
2.502		

(Option A, question 5 continued)

(c) Researchers studied 13 placental mammals to identify the number of genes involved in the sense of smell. The results are given in the chart below.

Suggest **two** reasons for primates having fewer genes for olfactory receptors than the other placental mammals.

[2]		
	-	٠.
- 1		,
	լ-	٠.

				•		•		•	•	•			•	•		•		•	•		9	٠.			100	-	ž į	i s				•		•		•		•	•	•	•		:	•	•	216		9		88			9	90	00		57	9	•					000	. 9	0.5	•))		•	4			(4)	00	9
	3	65		<u>.</u>	• 5	Ŷ.	2 822		455	•	4			٠	e.	•	•	00.		•		2 1	639		Ke34		•66	• 5		•			٠	٠	÷	•	×	Œ			•	*	•	•		:: (e			0.0	00.	,	0.0	,	603	03		100	,				•				• 33	•3			×	8			9.0	69
	0	000	•	•			• (5)	•	•0	×	٠	ě	•	•	्र		0.5	/() •	ŀ	S:•		•	07:	6 9	20)		• 0	•00		•	•	•	٠	(e)	10	S.	8	•	*	٠	*	ŧ		*		88.			-	53	1	55		8.75		,	1000	,		į,	ŀ	e S'	,	7)(2	į	•03	•			٠	•		٠	-	
*		88		•	•	*	1/6	•	•	٠					•	•		e.		9.3	,		ń	,			i.v			•		٠	٠	٠		٠	•	4	٠	•	•	•	٠	0.00		•	9.	3	9						30	1		,	•	ij.	,	ŗ.		197				•	•	•	*				-54
7.0				•(•	•)	•	•	•			ૼ			i i	٠					e na	10	1		. 3	3917		2					S.		÷	÷	à	4	•		÷				9	S: •	,		- 77		63	. ,	23			653		: (·	553		•		(6)	. :	R 0.	• (×	*	<u>⊛</u>	*		€()•		.05 4
		82		•77	•	÷	100		• 0	•			: x	•		,		0.64		::-	•		0.93		S.	. 3	•	•		•::		•	(a)		٠	×	81		٠	•	•	٠	() (•	00	019	ŀ		553		63		50	- 10		010			773				(3)	• :	5 3	• • •	•	•8	19	÷	٠	:: ::	6 1	103

O	pti	on	A	CO	ntir	านส	(bs
_	~.	~		00			, w,

6.	(a)	Using a specific example, describe the learning processes involved in imprinting.	[2]
	• • •	à tri tà tiết til liết til trai til til delt til televia til ben 12 august 12 august 12 august 12 august 12 aug	
	3 3500	N FOR THE WORLD WAS BOOK FOR THE WORLD FOR THE WORLD FOR BOOK FOR BOOK FOR YOU WORLD FOR FOR BOOK FOR BOOK FOR	
	X 80367	* ** ** *** ** *** ** *** ** ** ** ** *	
	2 *******		
	(b)	Define memory.	[1]
	8 * #88#8	AND BY BEEN BY	
	• • •		
	(c)	Explain the processes that contribute to the development of song in a young bird.	[4]
		divid the first the title the title to the title the transfer that the transfer the	
	9 252		
	N X88		
	3 505	FOR ST FORE ST FORE ST FOREST ST FORE ST NO STATE ST STATE ST STATE ST STATES ST STATES ST STATES STATES STATES STATES STATES	
	3.70	***************************************	
	1 73		
	66 X639		
	15 808	\$26.00 CO \$100.00 CO \$100.00 CO \$100.00 CO \$100.00 CO \$100.00	

End of Option A

Option B — Biotechnology and bioinformatics

7.	(a)	State one advantage of using microorganisms in industry.	[1]
	(b)	Citric acid can be produced in fermenters by continuous culture.	
		(i) State the name of the microorganism that is used industrially to produce citric acid.	[1]
		(ii) Outline one condition required for optimal production of citric acid in the continuous fermenter.	[1]

(c) Outline how pathway engineering is used in industrial fermentation.

[2]

(Option B continued)

8. (a) The Amflora potato is a genetically modified organism (GMO).

	(i)	State how Amflora potatoes are used in industry.	[1]
	34 MESPONOMEN 4:34		
+	(ii)	Distinguish between the types of starch molecules produced in this GMO potato and in a normal potato.	[1]
	* * * * * * * * * *		
	0 000 00000 100	*** ** * * * * * * * * * * * * * * * * *	
	ne accus decretors accus	EXP CO CONCO ES MAN CO EN COS ES CORRES ES CON ES CONTRA EN CONTRA CARRA CARRA CONTRA CARRA CARRA CARRA CONTRA CON	
	(iii)	Outline the genetic modification used in a GMO, such as this potato.	[2]
	SE 2004 10040 W. W.		
	* ** *****		
	# ### ################################	CEPTA CERTA LE RUINA LE RUE LE CEPTA LE REPUBBIRE REPUBBIRE RE REPUBBIRE RE REPUBBIRE RE REPUBBIRE	
	SE \$158 \$158 (\$150)	E- KAN E- KAN E- KAN E- KANAN E- KAN E- KANAN ENTEN ENTEN EN TOWEN EN E	

(Option B, question 8 continued)

- (b) Soybeans have been genetically modified to be resistant to glyphosate.
 - (i) State the name of the organism used to introduce the glyphosate resistance into soybeans.

[1]

(ii) Data has been recorded on the number of species of glyphosate-resistant weeds between 1997 and 2010.

Suggest how the change in the number of species of glyphosate-resistant weeds could cause environmental problems.

[2]

*	٠	1	3	e i	•	•		*		ं	8	•	٠	•		93	•	3	•			Ť	e:	•	2	100			•		٠	•			•	•	٠	•	•	•		•		•	• •	•	•	•				•	• •	•	٠	•					
•	•		•	٠	•	•		•					•		•			•					٠		À			1		•	٠		1		•			٠			•			•	•		¥85	•		•				90		٠	• 0		•		(10)
	•		•	•		•			•	124	÷	•	×	•		183	¥3	•	100				•	•	•	•)()	 		•) ()	*		•	3	•	•	٠		• 33		•	()•	•00	•	•	(10)	•0	* 1	• •	(*	*:	•				•	•000	* *	•	400	9.5
•	٠	٠		•	•	•		•	•	0.8	٠	(9)	*		5 5	(6.9	*	•	•()	•	٠	95	•	• / :	•	• (6)	90	•	•		*	• • •		0.5	8 (?		•	î.	100	: :		ð.	* (5	*		ð.	ts	•		S.F.	1			. (5)		o,	500	5 5	10	0.00	
*	ť	t	Ċ	Ť	•	•	35	•	•	•	•	•	*	۲.,				9	*		•	1	•	•	•	• 0	ď		•		0	•		1.	•		•	٠	•				*0	•	•		•				•	٠	•				*11.7		41014	211.00	
5	ç	ä	÷	91	9		10%			172		9			5	200	-		37	O.	1	072			¥.						-									: :		9	200			9	90				40	(A)					¥153	3			16

Turn over

[1]

[2]

(Option B continued)

9. A developing technology in wastewater treatment is membrane-based separation. However, biofilms can develop on the membranes and prevent them from filtering waste.

(a) Describe a biofilm.

DE SENSOF APR SENSOR APR SENSO		

(b) Biofilms on filter membranes in wastewater treatment plants were found to be dominated by the bacterium *Pseudomonas putida*. Zosteric acid (an organic acid) was tested as a possible control of the growth of *P. putida* biofilms.

(i) Evaluate the use of zosteric acid as a possible control of the formation of biofilms by *P. putida*.

(ii) Suggest a reason for the effect of zosteric acid on the growth of *P. putida*. [1]

(Option B continued)

						е			_		,	•	_	•••		,			_	_		i					_	_	_			_										_								•	_	_		_			_			
71	4			···			45			•			533		×4		•		65		::		•		::::: <u>:</u>		•			٠	•	•		-	• • •		20	8836	320		40		200		(·		58 9	¥30			:: ::	• 7 •	(C;•)	486		50	**	•	• (•	000
9		60		•	è	•	*	٠		•	.				ः		•		• : :		9	•	•		000		•	٠	•(0)	•	٠	•	• (•	86	00	•	×	0.	٠	• •	•)	٠			(*)		(g.)	•	• •			•	935	:3		Ç.	*1	:•::		97
3		ŧ.	٠	٠	*);•	÷i	*2	5	800	• 3		e e		8.9		٠	×	•			*	•	: :	50	*	۰	*	1000		٠	÷	in.	**	• ;	ı.	æ	65	٠		1					3 6			÷	8	ē	, .	÷	•	٠	•	Ť	•		•
7		•	٠	٠	9	Č	•	٠	ě		• /			;		٠	v	٠	•		•	÷	•			•	٠		• 0 •	•	•	•	• (•		•	•	•	•	٠			9	٠.	٠	٠		•	٠	•	•	•		×	200	2		Ġ.			3
			٠	٠	2	G.	a)	٠			200						•				٠,	٠				÷		ě	***	•	٠	•		*	.	ē	:	ea	٠		**	: :			•			**		2	84.3	2) (\$	5.°•	€ 00		•	•	/ a s/	* *	85
3			٠	٠	ä	÷	•	•	*	×	•00		0				/ a	•	€3		Ş	•	*			* 0	2.00		¥30)	*		•	•(1)•	*	***	÷	34		•		*	/¥	• :		•3		9(4)	•		٠	.•)	•	· · ·	•55	•	•)(•)	•		
		•00	٠	•	×	(±	*	•	×	*::	• 7 19		18			٠	٠		•==				•		977	*	۰	٠	: (5):	*	٠	*	:::	*:	• .	•	35	•	*	•:	*	SŤ	•:::		•3		::0	•	2 7		(8)	e);	i i	5 00	·		•	٠		
			ė	•	•	97	**	•	ċ	500	7(0		10			٠	٠	٠	50	9	٠	٠	٠			•	٠	Š	• •	•	•	٠	•	٠	• •	•	٠		٠	• •	•	•			•		٠	•		•	٠		٠	•			٠	٠		104
			٠	٠			٠	•		•						٠			11%		•	/ 🐍				•	•	٠	<u>(e)</u>	-	•	•		9	• 4		¥		•		*6		***		4 (8)		ė ir m	٠	4500	*				80	•	•	710	•		69
2	. 5		٠		è		•		÷		.53							æ	€ 08		•				86	•	٠		•	(*)	٠		*:(*					•					•100		*00			300	9000		0.00			•		50.0	0. .	٠		esse.

End of Option B

Option C — Ecology and conservation

11. Cattails or bulrushes (*Typha*) are plants found in wetlands in many parts of the world.

The distribution of two species of *Typha* was studied in ponds at different depths of water. The relative production (%) was calculated from the mean total dry biomass of each species at each depth. The negative values of water depth indicate that the plants were growing at the edge of the ponds with their bases above the water level.

Both species grown together

Each species grown separately

(a) Identify the specific type of niche that each graph illustrates.

[2]

Both species grov	vn together:	* ****	53 E		 *:(*):	: 15:	, e	9 to	100	ne te	4 183	es 1	S-5:	:::	* 100	:::	101	 •
Each species gro	wn separate	ly:	en en	10 K 10	 9090							 	e=4) %	 ¥004	100		•)0•	 49

(Option C, question 11 continued)

(b)	Distinguish between the distributions of the two species in the two graphs according to water depth.	_
	VIDEA FARE EARLS EARLS OF ANY 12 COURS OF THE STATES OF	
3636 3634		
39.48 P.59	NO BOTO BOTO BOTO BOTO BOTO BOTO BOTO BO	
* * * *		
S\$55\$1.20\$		
	Describe two environmental factors, other than water depth, that could affect the distribution of the two species, giving a reason for each.	

(Option C continued)

(i)

5 kg edible parts

12.	(a)	Not all of the energy ingested by animals in their food is ultimately converted to energy
		in the biomass of the animal's body.

	biomass.	[1]
	*	
*****		08 109 10000 101

State one factor that affects the percentage of ingested energy converted to

(ii) The diagram shows the conversion ratios of four animals when fed 100 kg of feed.

100 kg feed

Discuss the differences in the conversion ratios of the cow and fish.

65 kg edible parts

80 kg edible parts

22 kg edible parts

(Option C, question 12 continued)

(iii) Crickets are said to be the food of the future. Using the data, deduce an advantage for crickets as a food source for humans.

[1]

(b) A climograph for an ecosystem is shown.

Key:

- Precipitation
- Temperature

Identify the ecosystem shown in the climograph.

[1]

(Option C continued)

13. (a) The red lionfish (Pterois volitans) is an aggressive predator that inhabits coral reefs. It is native to the Indo-Pacific ocean but has recently been found in Florida, the Gulf of Mexico and the Caribbean and is considered to be an invasive species.

Discuss the impact that the presence of this fish could have in the Gulf of Mexico.	[3]
I KNOCK ON KNOCK ON KNOCK ON KNOCK OF EVER OF STOLEN OF BUILD OF BUILDING MEMBER OF BUILDING OF BUILDING BUILDING BUILDING BUILDING	
	•)
	51
	R
	•):
(b) Outline the effect of DDT on the environment.	[2]
(b) Outline the effect of DDT on the environment.	
(b) Outline the effect of DDT on the environment.	
(b) Outline the effect of DDT on the environment.	
(b) Outline the effect of DDT on the environment.	[2]

(Option C continued)

4	u			_	LC	111	V	_	''	16	7L	_	_	<u></u>	>		_	-	_	75	- -	10	-		10	21	ıy	_	, o		_			u	IV	<u>-</u>	ان	Ly	_		a	_	_	'''		111	ui		. у	_	_	_	_		_	Э.	_	_	_	_	_	_	_
•			- 4		٠	ş	S.			•	23				•					٠	¥85		. · ·			1	\$18	94	260				÷	0.4	*89	: is	200		0.0	•	•		*11	• /		•	*0	S.	•		٠	•	**		#: [1	654		9(0)	٠	(K)	3	* 220	
i.		839		e:*	•	ě	ā	*:	•	• 0 •	100		•		•	٠	• •			•	*00	9 :		•	٠		*	•	80		•		9)	.	*00		*			•	*	€ 1	£ 0	• ()	•			÷	***	•		ij.	*0	41	869	143	. 5	- 19	•		æ	80)	1
*		279		(E.	್ಯ		e	5 00		•	21	•	ं	÷	٠	*:	5/3		٠	a t	ŧ	•	•	U ×		ೆ	te	e.t	• 8				ij	3.3	<u></u>	53	ti	1	20	e e	•		7)	•			•	·	•	v is	•	•	Š		•	ě.	٠	•	٠		٠	•	
٠	,	/ 11					•	•					÷	•	٠	٠			٠	٠	•	٠				٠	•)		•		• (•			•	•	•	•			•	٠	•	•	•		• ं	•	i.	•			ž	¥i)	•			٠		٠		•		i i
Á		104	2		22					::::		1	1/4	¥	٠	•	233			्र	•					•	\$	¥		2.1		•:::•	÷	83	\$ 63	e 1	*		27.	-	20	٠.	100	•			×	i i	*::	•			•	•		€ 3	*	- / a /	٠	ŧ	•	•	11.04
٠		(5)	. ,	9.	(154)	•		•	•)	•(1)			•	٠	•	•	# 060		•	•	¥(1)			1))•	٠	28	•	(¥	*3	•0		•	٠		•10	•	•	•	•	•	٠		•)	•	٠		٠	•	•	• •	٠	:)•	•	• ;		F. 178	٠	800	.*	•00	9.5	***	
*	•	000		-	::	•	*	×÷:	• >	•60	23	•	839	*	٠	39.	510	, ,	۰	:1€	613		• 13.	93.	٠	:	•9	÷	9 8	•		::: :	*	51 *	*:0		•	•	81.5		*	٠.	٠	• :	*	isi	*	*	•	•			•	•/	ž.		٠			•	•	ě	7)
	,	XXX			ĵ,	•	9	•3			i i			*	٠	٠			٠	•	•		•	•	٠	٠	•	ė	•	•		•	•	į	•	•	•			•	٠	•	•	•			٠		•	• [2	V.	٠	٠		SVG.	ŭ		10	20	12	3 0%	115
٠	•	3113	2		102								•	•	•	•	. 83			•	***			•		S.	¥	:: .	•	213		:::	•	? fi	÷		•			:33		•	٠	•	2		×	•	•	• ? •		0.0	•	•		****	٠			*)3	æ	300	609

End of Option C

Option D — Human physiology

15. There are many studies that show that overweight and obese people have greater health risks. The graph shows the relationship between body mass and Vitamin D deficiency.

(i)	Outline the relationship shown between body mass and Vitamin D deficiency.	[1]
eleve es	t describe process for describe for discrete for describe for describe and describe for describe for describe for describe	
		(i) Outline the relationship shown between body mass and Vitamin D deficiency.

\'' <i>'</i>	Olaic Ol	ne effect of Vitamin D deficiency.	

(iii)	People who are obese have an increased risk of hypertension. Outline the consequences of hypertension.	[2

		•	*	•		25	•	18.		7.00	•		•	٠	*	\$18	•	:35	• :	*	'n	÷	•	•	•	***		•	3	*:	•	٠	10	*	*1	•		11	35	83	٠	٥	•	ot.	e i		*		•		9.35	213	83		giệ.	ř	۰		*	8:	*	٠	1	*	G#		8.		•	
• •	•	•	•	•		٠	•		•	٠	•			•	٠	•	•	•	•		•()	ě	•	•	•		•	•	•	٠	•	•		٠			٠		٠		٠	٠		٠	٠	٠	•		٠					•			٠	٠				٠	٠	•			٠	٠	•	
• •	¥	24	*			84		i i i			•	:	•		4		2	• : :	•	•	•	4	•	•			÷	:	•		•		2	÷	•		٠		:	2		٠				٠	4	ě		•		274						•	ž		*		•		:			•		
***	*	()) •	90	• • •		:•		100	((•	99	٠	904	•	•	٠	63		€ E0	• (*		•00	•	•10	•) ?	•	e:	×	•	100	*	•		i i	•	ja s	•	٠	2		£.		٠	•	•	•	٠		•		1 55		()	633		9.0	*	ं.€	(4)	•		*	•	⊙ •	•	(() a	•	()			
S . S . S		(() <u>*</u>	*10	• •	1 5	æ	*85	1 2	ii.e	াৰ		÷	×	•	٠	50		• 5	•::	•	•	,	•	50	•	•	×	:87	÷		٠	٠	•	es.	50		٠	•	æ	*	•	•	•	85	**	٠	e i	•		•	1.0	9.98	93	,	36 .	×		337.	*	: :	*	•		•	i.	*	100	20.		
			•			٠	•		٠	٠	•	ě	ě		•	•		•	•		•	÷	•			•	÷	•	9	*	٠	•	·	•	÷		٠		9	8	٠	٠		٠		٠	*									٠	٠			1			٠							

(b)	State the cause of scurvy.	[1]
3×1		

(Option D continued)

16. In 2012, Sierra Leone suffered a nationwide cholera epidemic. The graph shows the number of people admitted to cholera wards during a two-month period.

	(a)	State the main symptom of cholera that would have resulted in admission to hospital.	[1]
	74 4004	stand for engaged the engage to engage the source and engage and engaged the engaged was engaged the engage and	
_	(b)	Company and reason for the area distribution of national admitted to abole a words	[41

	_						-	_	_	_	_	_	_	_		_	_			-	-	_	_							-	_	_	_	_	_				_	_		_	-		_		_	_	_			_
1 251						-	100	•		P	:: <u>-</u>					•			÷		 						E					٠		100		N IS	i k	÷		•	2/10		S.	į:	3		888	¥38	4	• •		
8 50	• •		3	-	• •	ŝ		•	• •	į	•	•		7	Ċ	•		,	÷	v		·	•	7		٠	•	. ;	Ċ		į	•	•		8	• •	٠	•	•	٠		•) •	•	•	•		٠	•	•		•	
(# 5)(#)	• •	•.•		<u>C</u> 3	•//•	00 e 1	525	٠			•	•	973	*)	9.	•(1)	•63			8 0	<u>.</u>	76.5	1)3	•	• •	٠				•88	•	(*/	(B)	•:•	*	• ;	2.5	2	•	•	•	• •		***	•	•	5.	•00		• •	e.	
(a + ()) a			ų,	00.3			0/2	•			•	•	650	•		•	. 77.		9.2	20	•) (A)	*10	•		•	20	. ,	12	4500				•	•	•		•	•::•	•	•	• /•	() (•3	3		68	•	9 (• •		

(c)	_	Du	tli	ne	e t	h	e —	pı	·o·	ce	? S	se —	es	t	ha	at	0	C	CL	ır	ir	ı t	h	Э	la	rg	e	ir	ite	es	tir	ne	: c	of	a	he	эа	ilti	hy	′ F	oe	ers	SO	'n	š										[2]
W 474 4	800			<u> </u>	¥.	•		S	3 13	::N		20 i			. 115			•	2.5			ě	•		Sia.	80						#85 #	¥2	•		554				: :	(F)	*30		27.0	814	20	4	27.		20					
	•	• •	ě	•17		•		•	•	•	•		•	•	•	•	•	٠	•	•	•	9.00	•			•		•	•	٠	ĕ	• (•	•	•)		٠		٠	ě	•	•	٠	•	• (•		•	•	•	•	•		•			
****	•	• •	S.	•10•	*	•	•55•	···	•38			e i		æ	50		(3•)		•		•	ř	• :			883				::•	×	500	*	•		S.*		×	•	٠:	Sit.	*:	• 1	• •	88	*	•	• :		23	•	e v			
enex x	G	• /*	•	• •	٠	•	•	3	***		((4 0)	₩ ?	-	٠	•	.)	- (4	•	•	. ,	e::	æ	€ 0			•	•	•			×	e****	٠	*				٠	œ		•	* 00	•)	•	010	ě	9	•][•	•	٠	•		•		
1000 1	6/1		ŭ.		¥			•	200	2.2	100	-			60	2 7				2	e ig								0 0	4			è		2 13			٠				•	a r	. 10	E#	13		• 11		÷	4	• 1			
	ai T		•	7/03	•			17.	9 3			9			•		S.O.	٠	÷	,		•	• 0		•		•	Ó	, ;	8.		•	0	٠	,	•		•	•		no.	•	•	•	Ž.	٠		•	•	•	٠	•	•		
*****	(q)±	• •	٠	595	*	•	•	()*	***	• •	(•) ·	* *	<u>.</u>	٠	•		() *	٠	•		•(i)(±	•	•) ()			• •		•		•	٠	• •	*		: :	•	808		•		:::•	•3	•00		9.18	**		319	92	•	•	•5	92		
****	S.	•	· •		•			7.	•05			•	£9	٠	•	× 3			•			•	•00		×	•		1		•	٠	•	92	• 5		٠	253	٠	(in)		:::•	*2	•))			•0	9	• 1	639	•	•	• •	03		

(Option D continued)

17.	(a)	Identify one structural difference between sinusoids and capillaries of the liver.	[1]
	S#SS# 469		
	303 X	A RAILED BY BEEN OF THE ROLL BY BY BY BEEN BY BEEN BY BEEN BY BEEN BY	

(b)		Ex	pla	ain	h	OW	/ ja	au	nc	dic	е	CC	ou	ld	b	е	aı	n i	ind	dic	af	tio	n	of	liv	/e	r r	na	alf	un	ct	or	١												[2
(*) (*)	•555	• • • • • • •	0.00		• •	• •	* 2	* *	•) (•	€ 6	* *	(4)			*000*	90	(0.0)	e 10	29)	609	*	0.8	¥:00	90	•	*::*	90		***	* *	90	00				* *	() ·	• •		600	• •	0.8	*::(*	* ×	
	1 /2/3	•			· *		•(3)		**	6.63			. :	23	:0:	*	•	5 5	65 8	e:		2.5%	7007	*	•::•	:65	78	•::	• • • •			10	5 E		۰		::::::::::::::::::::::::::::::::::::::	• •	æ t	88	*::		tait	t 12	
* *	1001	• • •					5/1/		•		; ;	·				ě	٠	į	A.		ě	÷	•	•	٠.	.01	٠	•	÷		• .		•		٠		0	• •			• (•		• •	• •	
	• 1		•	• •		• •	200			e	1 1	(12)		80					62			1102	100	*		2001	¥		100								::::::::::::::::::::::::::::::::::::::		÷ :	881		į	¥754		
30.04	1001		e ko	2 20		• •	¥000		•) (•	e 6		• (× +		63	•		e x	S) 4	69	• 6	-: •	* :9	•		* 650 *	100		*		(a))			(e) (e	(10)		SI - 1			000	• •		•:•	*: (*)	

18. The bar chart shows the prevalence of coronary heart disease (CHD) deaths in New Mexico, USA, between 2014–2016, according to ethnicity and sex.

(a) Distinguish between male and female death rates due to CHD. [1]

(b)	Suggest one reason for the differences between the sexes in death rate from CHD.
	CH KINDE ES KONDENE EN KONDENE EN KONDE KOM
to 2 (t.)	ed total to total to total total total total to be bord to the total to and to be believe to be to both to both
(c)	Explain the reasons for separating the population of New Mexico into ethnic groups in this research.
V44 (24)	
4 30 4 (4 30)	CA MA MIN'S KA KINI CA KA KINI KA KINI KANINI KA KININI KA KINI KA KINI KA KA KA KA KAMINI KA KINI DA 1083 K
***	CA BARRARIA AND THE RADICE REPORTS AND EXPERTED BY ROLE OF ROLE OF REAL AND REPORTS AND THE RESERVED AND RESERVED AND RESERVED.
18 18	
	na pa para na pang sa pa pana pa pana pa pana ini panahan pa pang sa pana na pana na panahan pa pana na pana p
Expl	ain how signals from the sinoatrial node (SAN) pass to other parts of the heart, so that
	ain how signals from the sinoatrial node (SAN) pass to other parts of the heart, so that peating of the heart is coordinated.
	peating of the heart is coordinated.
	peating of the heart is coordinated.
	peating of the heart is coordinated.
the b	peating of the heart is coordinated.
the b	peating of the heart is coordinated.
the b	peating of the heart is coordinated.

End of Option D

Disclaimer:

Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB.

1

References:

- [How concentration of salt solution affects the average % change in mass of cantaloupe pieces], 2008.
 [graph online] Available at: http://science.halleyhosting.com/sci/ibbio/cells/labs/osmosisinq/graph2.gif
 [Accessed: 8 April 2019].
- 2. Kim, J., et al., 2006. Fig. 6. The effects of varying pCO² concentrations on the mean growth rates of (a) S. costatum, and (b) Nitzschia spp. during the bloom period. [graph] (Limnol. Oceanogr., 51(4), p.1634).
- 3. Guyton, A.C. and Hall, J.E., 2006. Figure 41–8. Effect of exercise on oxygen consumption and ventilatory rate. [graph] (Textbook of Medical Physiology, 11th edition, p.520).
- **4. (a)** [Neural tissues], 1997. [images online] Available at: https://shareitforward.files.wordpress.com/2012/06/data-to-action-kamsack-june-2011.pdf [Accessed: 8 April 2019].
- **4.** (b)(i) Marslen-Wilson, W.D. and Tyler, L.K., 2007. Figure 7. [image] (Philosophical Transactions of the Royal Society B, 362(1481)).
- 5. (c) Niimura, Y., et al., 2014. [Genes involved in sense of smell] [chart online] Available at: http://www.genome.org/cgi/doi/10.1101/gr.169532.113 [Accessed: 9 April 2019].
- 7. (b)(i) [Citric acid plant in Czech Republic], n.d. [image online] Available at: http://www.kasel.com/citric-acid-plant-in-czech-republic/ [Accessed: 8 April 2019].
- **8. (a).** [Amflora potato], 2011. [image online] Available at: https://www.basf.com [Accessed: 8 April 2019]. REFERENCE REDACTED.
- 8. (b)(ii) National Research Council, 2010. FIGURE 2-6 Number of weeds with evolved glyphosate resistance. [graph] (The Impact of Genetically Engineered Crops on Farm Sustainability in the United States. Washington, DC: The National Academies Press, p.78).
- 9. (b)(i) Polo, A., et al., 2014. Figure 4. Effect of zosteric acid on the amount of P. putida sessile cells. [graph] (International Journal of Molecular Sciences, 15(6), p.9504).
- 11. [Flowers of Common Cattail], n.d. [image online] Available at: https://extension.umass.edu/landscape/weeds/typha-latifolia [Accessed: 8 April 2019].
- 11. (a) Grace, J.B. and Wetzel, R.G., 1981. The American Naturalist, 118(4), pp.463–474.
- **12.** (a)(ii) [Four animals when fed 100 kg of feed]. [images online] Available at: https://pixabay.com [Accessed: 8 April 2019].
- **12. (b)** [Climograph], 2018. [climograph online] Available at: https://www.earthonlinemedia.com [Accessed 9 April 2019]. REFERENCE REDACTED.
- **13. (a)** [*Pterois volitans*], 2013. [image online] Available at: https://fishesofaustralia.net.au/lmages/Image/PteroisVolitansNORFANZ.jpg [Accessed: 8 April 2019].
- 15. Turer, C.B., et al., 2013. Fig. 1A. The prevalence of vitamin D deficiency. [graph] (Pediatrics, 131(1), p.e155).
- **16.** Blacklock, A., et al., 2014. Fig. 2 Age distribution of total patient population admitted to the cholera wards. [graph] (Global Health Action, 8(1)).
- **18.** [Deaths from CHD per 100000 population], n.d. [graph online] Available at: https://ibis.health.state.nm.us/indicator/complete_profile/CardioVasDiseaseHeartDeath.html [Accessed: 8 April 2019].

28FP28