\(\huge\text{Nützliche Symbole}\)
.
\(\mathcal{X}\) \(\longleftarrow \quad\) \mathcal{X}
\(\times\) \(\longleftarrow \quad\) \times
\(3^2 \) \(\longleftarrow \quad \) 3^2
\(\sqrt{\gamma}\) \(\longleftarrow \quad \) \sqrt{\gamma}
\(\sqrt[n]{\gamma}\) \(\longleftarrow \quad \) \sqrt[n]{\gamma} (Achtung: Klammerformen beachten!)
\(\frac{n}{m} \) \(\longleftarrow \quad \) \frac{n}{m}
\(1,2,3,\dots \) \(\quad \longleftarrow \quad \) 1,2,3,\dots
\(\pi \approx 3,1415 \quad \longleftarrow \quad \) \pi \approx 3,1415
\(\angle \ \alpha \) \(\qquad\quad \longleftarrow \quad \) \angle \ \alpha
\(\measuredangle : ABC\) \(\quad\longleftarrow \quad \) \measuredangle\ :\ ABC
\(\sphericalangle : ABC\) \(\quad\longleftarrow \quad \) \sphericalangle\ :\ ABC
\(\sin(\alpha), \cos(\beta)\quad \longleftarrow \quad \) \sin(\alpha), \cos(\beta)
\(\frac{2}{5} \quad\ \longleftarrow \quad\) \frac{2}{5}
\(\left( \frac{\frac{3}{2}}{7} \right) \quad \longleftarrow \quad \) \left( \frac{\frac{3}{2}}{7} \right)
(\(\frac{\frac{3}{2}}{7}) \quad \longleftarrow \quad \) (\frac{\frac{3}{2}}{7})
\(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{P} \) \(\quad \longleftarrow \quad \) \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{P}
\(<, \leq, \nless, >, \geq, \ngtr \) \(\longleftarrow \quad \) <, \leq, \nless, >, \geq, \ngtr (Achtung: Abstände!)
\(\large O_{Pyramide} = \overbrace{a^2}^{=G} + \overbrace{4 \ \frac{a \ h_a}{2}}^{=M}\) \(\quad \longleftarrow \quad \) \large O_{Pyramide} = \overbrace{a^2}^{=G} + \overbrace{4 \ \frac{a \ h_a}{2}}^{=M}
\(\large O_{Quader} = \underbrace{2\cdot a \cdot b}_{=unten, oben}\ +\ \underbrace{2\cdot a \cdot h}_{=vorne, hinten}\ + \ \underbrace{2\cdot b \cdot h}_{=rechts, links}\) \(\quad \longleftarrow\)
\(\quad \longleftarrow \quad \) \large O_{Quader} = \underbrace{2\cdot a \cdot b}_{=unten, oben}\ +\ \underbrace{2\cdot a \cdot h}_{=vorne, hinten}\ + \ \underbrace{2\cdot b \cdot h}_{=rechts, links}
\(\mathcal{L} = \{ x \in \mathbb{N} \ | \ 3 \leq x < 10 \}\) \(\quad \longleftarrow \quad \) \mathcal{L} = \{ x \in \mathbb{N} \ | \ 3 \leq x < 10 \}
\(\mathcal{L} = \Big\{ x \in \mathbb{N} \ | \ 3 \leq x < \frac{15}{2} \Big\}\quad \longleftarrow \quad \) \mathcal{L} = \Big\{ x \in \mathbb{N} \ | \ 3 \leq x < \frac{15}{2} \Big\}